9 research outputs found

    Defining Signatures of Arm-Wise Copy Number Change and Their Associated Drivers in Kidney Cancers.

    No full text
    Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns in copy number alterations in cancer cells vary both by tissue type and as a function of genetic alteration. We find that patterns in both chromosomal ploidy and individual arm copy number are dependent on tumour type. We highlight for example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell carcinoma tissue samples. We find that specific gene mutations are associated with genome-wide copy number changes. Using signatures derived from non-negative factorisation, we also find gene mutations that are associated with particular patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we successfully predicted the presence of mutated genes in a sample using arm-wise copy number patterns as features. This demonstrates that mutations in specific genes are correlated and may lead to specific patterns of ploidy loss and gain across chromosome arms. Using these same classifiers, we highlight which arms are most predictive of commonly mutated genes in kidney renal clear cell carcinoma (KIRC)

    DNA-based faecal dietary analysis: A comparison of qPCR and high throughput sequencing approaches

    Get PDF
    The genetic analysis of faecal material represents a relatively non-invasive way to study animal diet and has been widely adopted in ecological research. Due to the heterogeneous nature of faecal material the primary obstacle, common to all genetic approaches, is a means to dissect the constituent DNA sequences. Traditionally, bacterial cloning of PCR amplified products was employed; less common has been the use of species-specific quantitative PCR (qPCR) assays. Currently, with the advent of High-Throughput Sequencing (HTS) technologies and indexed primers it has become possible to conduct genetic audits of faecal material to a much greater depth than previously possible. To date, no studies have systematically compared the estimates obtained by HTS with that of qPCR. What are the relative strengths and weaknesses of each technique and how quantitative are deep-sequencing approaches that employ universal primers? Using the locally threatened Little Penguin (Eudyptula minor) as a model organism, it is shown here that both qPCR and HTS techniques are highly correlated and produce strikingly similar quantitative estimates of fish DNA in faecal material, with no statistical difference. By designing four species-specific fish qPCR assays and comparing the data to the same four fish in the HTS data it was possible to directly compare the strengths and weaknesses of both techniques. To obtain reproducible quantitative data one of the key, and often overlooked, steps common to both approaches is ensuring that efficient DNA isolation methods are employed and that extracts are free of inhibitors. Taken together, the methodology chosen for long-term faecal monitoring programs is largely dependent on the complexity of the prey species present and the level of accuracy that is desired. Importantly, these methods should not be thought of as mutually exclusive, as the use of both HTS and qPCR in tandem will generate datasets with the highest fidelity

    Microsecond MD simulations of human CYP2D6 wild-type and five allelic variants reveal mechanistic insights on the function.

    No full text
    Characterization of cytochrome P450 2D6 (CYP2D6) and the impact of the major identified allelic variants on the activity of one of the most dominating drug-metabolising enzymes is essential to increase drug safety and avoid adverse reactions. Microsecond molecular dynamics simulations have been performed to capture the dynamic signatures of this complex enzyme and five allelic variants with diverse enzymatic activity. In addition to the apo simulations, three substrates (bufuralol, veliparib and tamoxifen) and two inhibitors (prinomastat and quinidine) were included to explore their influence on the structure and dynamical features of the enzyme. Our results indicate that the altered enzyme activity can be attributed to changes in the hydrogen bonding network within the active site, and local structural differences in flexibility, position and shape of the binding pocket. In particular, the increased (CYP2D6*53) or the decreased (CYP2D6*17) activity seems to be related to a change in dynamics of mainly the BC loop due to a modified hydrogen bonding network around this region. In addition, the smallest active site volume was found for CYP2D6*4 (no activity). CYP2D6*2 (normal activity) showed no major differences in dynamic behaviour compared to the wild-type

    Changes in global nitrogen cycling during the Holocene epoch

    No full text
    Human activities have doubled the pre-industrial supply of reactive nitrogen on Earth, and future rates of increase are expected to accelerate. Yet little is known about the capacity of the biosphere to buffer increased nitrogen influx. Past changes in global ecosystems following deglaciation at the end of the Pleistocene epoch provide an opportunity to understand better how nitrogen cycling in the terrestrial biosphere responded to changes in carbon cycling. We analysed published records of stable nitrogen isotopic values (δ(15)N) in sediments from 86 lakes on six continents. Here we show that the value of sedimentary δ(15)N declined from 15,000 years before present to 7,056 ± 597 years before present, a period of increasing atmospheric carbon dioxide concentrations and terrestrial carbon accumulation. Comparison of the nitrogen isotope record with concomitant carbon accumulation on land and nitrous oxide in the atmosphere suggests millennia of declining nitrogen availability in terrestrial ecosystems during the Pleistocene-Holocene transition around 11,000 years before present. In contrast, we do not observe a consistent change in global sedimentary δ(15)N values during the past 500 years, despite the potential effects of changing temperature and nitrogen influx from anthropogenic sources. We propose that the lack of a single response may indicate that modern increases in atmospheric carbon dioxide and net carbon sequestration in the biosphere have the potential to offset recent increased supplies of reactive nitrogen in some ecosystems

    Contributions of Quaternary botany to modern ecology and biogeography

    No full text
    corecore