205 research outputs found

    Current progress on removal of recalcitrance coloured particles from anaerobically treated effluent using coagulation–flocculation

    Get PDF
    The palm oil industry is the most important agro industries in Malaysia and most of the mills adopt anaerobic digestion as their primary treatment for palm oil mill effluent (POME). Due to the public concern, decolourisation of anaerobically treated POME (AnPOME) is becoming a great concern. Presence of recalcitrant-coloured particles hinders biological processes and coagulation–flocculation may able to remove these coloured particles. Several types of inorganic and polymers-based coagulant/flocculant aids for coagulation–flocculation of AnPOME have been reviewed. Researchers are currently interested in using natural coagulant and flocculant aids. Modification of the properties of natural coagulant and flocculant aids enhanced coagulation–flocculation performance. Modelling and optimization of the coagulation–flocculation process have also been reviewed. Chemical sludge has the potential for plant growth that can be evaluated through pot trials and phytotoxicity test

    Suppression of FOXM1 Sensitizes Human Cancer Cells to Cell Death Induced by DNA-Damage

    Get PDF
    Irradiation and DNA-damaging chemotherapeutic agents are commonly used in anticancer treatments. Following DNA damage FOXM1 protein levels are often elevated. In this study, we sought to investigate the potential role of FOXM1 in programmed cell death induced by DNA-damage. Human cancer cells after FOXM1 suppression were subjected to doxorubicin or γ-irradiation treatment. Our findings indicate that FOXM1 downregulation by stable or transient knockdown using RNAi or by treatment with proteasome inhibitors that target FOXM1 strongly sensitized human cancer cells of different origin to DNA-damage-induced apoptosis. We showed that FOXM1 suppresses the activation of pro-apoptotic JNK and positively regulates anti-apoptotic Bcl-2, suggesting that JNK activation and Bcl-2 down-regulation could mediate sensitivity to DNA-damaging agent-induced apoptosis after targeting FOXM1. Since FOXM1 is widely expressed in human cancers, our data further support the fact that it is a valid target for combinatorial anticancer therapy

    FOXM1 Induces a Global Methylation Signature That Mimics the Cancer Epigenome in Head and Neck Squamous Cell Carcinoma

    Get PDF
    The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (n = 8), dysplasias (n = 5) and head and neck squamous cell carcinoma (HNSCC) cell lines (n = 11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions

    Bilateral adrenocortical carcinoma in a patient with multiple endocrine neoplasia type 1 (MEN1) and a novel mutation in the MEN1 gene

    Get PDF
    The incidence of adrenal involvement in MEN1 syndrome has been reported between 9 and 45%, while the incidence of adrenocortical carcinoma (ACC) in MEN1 patients has been reported between 2.6 and 6%. In the literature data only unilateral development of ACCs in MEN1 patients has been reported. We report a 31 years-old female MEN1-patient, in whom hyperplasia of the parathyroid glands, prolactinoma, non functioning pancreatic endocrine carcinoma and functioning bilateral adrenal carcinomas were diagnosed. Interestingly, a not previously described in the literature data, novel germline mutation (p.E45V) in exon 2 of MEN1 gene, was detected. The association of exon 2 mutation of the MEN1 gene with bilateral adrenal carcinomas in MEN1 syndrome, should be further investigated

    Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition

    Get PDF
    Using liquid slugs as microreactors and microvessels enable precise control over the conditions of their contents on short-time scales for a wide variety of applications. Particularly for screening applications, there is a need for control of slug parameters such as size and composition. We describe a new microfluidic approach for creating slugs in air, each comprising a size and composition that can be selected individually for each slug. Two-component slugs are formed by first metering the desired volume of each reagent, merging the two volumes into an end-to-end slug, and propelling the slug to induce mixing. Volume control is achieved by a novel mechanism: two closed chambers on the chip are initially filled with air, and a valve in each is briefly opened to admit one of the reagents. The pressure of each reagent can be individually selected and determines the amount of air compression, and thus the amount of liquid that is admitted into each chamber. We describe the theory of operation, characterize the slug generation chip, and demonstrate the creation of slugs of different compositions. The use of microvalves in this approach enables robust operation with different liquids, and also enables one to work with extremely small samples, even down to a few slug volumes. The latter is important for applications involving precious reagents such as optimizing the reaction conditions for radiolabeling biological molecules as tracers for positron emission tomography

    Analysis of Intracellular State Based on Controlled 3D Nanostructures Mediated Surface Enhanced Raman Scattering

    Get PDF
    Near-infrared surface-enhanced Raman spectroscopy (SERS) is a powerful technique for analyzing the chemical composition within a single living cell at unprecedented resolution. However, current SERS methods employing uncontrollable colloidal metal particles or non-uniformly distributed metal particles on a substrate as SERS-active sites show relatively low reliability and reproducibility. Here, we report a highly-ordered SERS-active surface that is provided by a gold nano-dots array based on thermal evaporation of gold onto an ITO surface through a nanoporous alumina mask. This new combined technique showed a broader distribution of hot spots and a higher signal-to-noise ratio than current SERS techniques due to the highly reproducible and uniform geometrical structures over a large area. This SERS-active surface was applied as cell culture system to study living cells in situ within their culture environment without any external preparation processes. We applied this newly developed method to cell-based research to differentiate cell lines, cells at different cell cycle stages, and live/dead cells. The enhanced Raman signals achieved from each cell, which represent the changes in biochemical compositions, enabled differentiation of each state and the conditions of the cells. This SERS technique employing a tightly controlled nanostructure array can potentially be applied to single cell analysis, early cancer diagnosis and cell physiology research

    Deficiency of FLCN in Mouse Kidney Led to Development of Polycystic Kidneys and Renal Neoplasia

    Get PDF
    The Birt–Hogg–Dubé (BHD) disease is a genetic cancer syndrome. The responsible gene, BHD, has been identified by positional cloning and thought to be a novel tumor suppressor gene. BHD mutations cause many types of diseases including renal cell carcinomas, fibrofolliculomas, spontaneous pneumothorax, lung cysts, and colonic polyps/cancers. By combining Gateway Technology with the Ksp-Cre gene knockout system, we have developed a kidney-specific BHD knockout mouse model. BHDflox/flox/Ksp-Cre mice developed enlarged kidneys characterized by polycystic kidneys, hyperplasia, and cystic renal cell carcinoma. The affected BHDflox/flox/Ksp-Cre mice died of renal failure at approximate three weeks of age, having blood urea nitrogen levels over tenfold higher than those of BHD flox/+/Ksp-Cre and wild-type littermate controls. We further demonstrated that these phenotypes were caused by inactivation of BHD and subsequent activation of the mTOR pathway. Application of rapamycin, which inhibits mTOR activity, to the affected mice led to extended survival and inhibited further progression of cystogenesis. These results provide a correlation of kidney-targeted gene inactivation with renal carcinoma, and they suggest that the BHD product FLCN, functioning as a cyst and tumor suppressor, like other hamartoma syndrome–related proteins such as PTEN, LKB1, and TSC1/2, is a component of the mTOR pathway, constituting a novel FLCN-mTOR signaling branch that regulates cell growth/proliferation

    NtGNL1 Plays an Essential Role in Pollen Tube Tip Growth and Orientation Likely via Regulation of Post-Golgi Trafficking

    Get PDF
    Background: Tobacco GNOM LIKE 1 (NtGNL1), a new member of the Big/GBF family, is characterized by a sec 7 domain. Thus, we proposed that NtGNL1 may function in regulating pollen tube growth for vesicle trafficking. Methodology/Principal Findings: To test this hypothesis, we used an RNAi technique to down-regulate NtGNL1 expression and found that pollen tube growth and orientation were clearly inhibited. Cytological observations revealed that both timing and behavior of endocytosis was disrupted, and endosome trafficking to prevacuolar compartments (PVC) or multivesicular bodies (MVB) was altered in pollen tube tips. Moreover, NtGNL1 seemed to partially overlap with Golgi bodies, but clearly colocalized with putative late endosome compartments. We also observed that in such pollen tubes, the Golgi apparatus disassembled and fused with the endoplasmic reticulum, indicating abnormal post-Golgi trafficking. During this process, actin organization was also remodeled. Conclusions/Significance: Thus, we revealed that NtGNL1 is essential for pollen tube growth and orientation and it likel

    Genome-wide analysis of allelic imbalance in prostate cancer using the Affymetrix 50K SNP mapping array

    Get PDF
    Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in male subjects in Western countries. The widespread use of prostate-specific antigen (PSA) has increased the detection of this cancer form in earlier stages. Moreover, it has increased the need for new diagnostic procedures to be developed for patient stratification based on risk of progression. We analysed laser-microdissected prostate tumour tissue from 43 patients with histologically verified PCa, using the new high-resolution Affymetrix Mapping 50K single-nucleotide polymorphism array. The results showed six major loss of heterozygosity regions at chromosomes 6q14–16, 8p23–11, 10q23, 13q13–21 and 16q21–24 and a novel region at chromosome 21q22.2, all of which reveal concomitant copy number loss. Tumour development was further characterised by numerous novel genomic regions almost exclusively showing copy number loss. However, tumour progression towards a metastatic stage, as well as poor differentiation, was identified by specific patterns of copy number gains of genomic regions located at chromosomes 8q, 1q, 3q and 7q. Androgen ablation therapy was further characterised by copy gain at chromosomes 2p and 10q. In conclusion, patterns of allelic imbalance were discovered in PCa, consisting allelic loss as an early event in tumour development, and distinct patterns of allelic amplification related to tumour progression and poor differentiation

    Autoimmunity-Associated LYP-W620 Does Not Impair Thymic Negative Selection of Autoreactive T Cells.

    Get PDF
    A C1858T (R620W) variation in the PTPN22 gene encoding the tyrosine phosphatase LYP is a major risk factor for human autoimmunity. LYP is a known negative regulator of signaling through the T cell receptor (TCR), and murine Ptpn22 plays a role in thymic selection. However, the mechanism of action of the R620W variant in autoimmunity remains unclear. One model holds that LYP-W620 is a gain-of-function phosphatase that causes alterations in thymic negative selection and/or thymic output of regulatory T cells (Treg) through inhibition of thymic TCR signaling. To test this model, we generated mice in which the human LYP-W620 variant or its phosphatase-inactive mutant are expressed in developing thymocytes under control of the proximal Lck promoter. We found that LYP-W620 expression results in diminished thymocyte TCR signaling, thus modeling a "gain-of-function" of LYP at the signaling level. However, LYP-W620 transgenic mice display no alterations of thymic negative selection and no anomalies in thymic output of CD4(+)Foxp3(+) Treg were detected in these mice. Lck promoter-directed expression of the human transgene also causes no alteration in thymic repertoire or increase in disease severity in a model of rheumatoid arthritis, which depends on skewed thymic selection of CD4(+) T cells. Our data suggest that a gain-of-function of LYP is unlikely to increase risk of autoimmunity through alterations of thymic selection and that LYP likely acts in the periphery perhaps selectively in regulatory T cells or in another cell type to increase risk of autoimmunity
    corecore