74 research outputs found

    Coupling of CFD and semiempirical methods for designing three-phase condensate separator: case study and experimental validation

    Get PDF
    This study presents an approach to determine the dimensions of three-phase separators. First, we designed different vessel configurations based on the fluid properties of an Iranian gas condensate field. We then used a comprehensive computational fluid dynamic (CFD) method for analyzing the three-phase separation phenomena. For simulation purposes, the combined volume of fluid–discrete particle method (DPM) approach was used. The discrete random walk (DRW) model was used to include the effect of arbitrary particle movement due to variations caused by turbulence. In addition, the comparison of experimental and simulated results was generated using different turbulence models, i.e., standard k–ε, standard k–ω, and Reynolds stress model. The results of numerical calculations in terms of fluid profiles, separation performance and DPM particle behavior were used to choose the optimum vessel configuration. No difference between the dimensions of the optimum vessel and the existing separator was found. Also, simulation data were compared with experimental data pertaining to a similar existing separator. A reasonable agreement between the results of numerical calculation and experimental data was observed. These results showed that the used CFD model is well capable of investigating the performance of a three-phase separator

    A Very High-Order Accurate Staggered Finite Volume Scheme for the Stationary Incompressible Navier–Stokes and Euler Equations on Unstructured Meshes

    Get PDF
    International audienceWe propose a sixth-order staggered finite volume scheme based on polynomial reconstructions to achieve high accurate numerical solutions for the incompressible Navier-Stokes and Euler equations. The scheme is equipped with a fixed-point algorithm with solution relaxation to speed-up the convergence and reduce the computation time. Numerical tests are provided to assess the effectiveness of the method to achieve up to sixth-order con-2 Ricardo Costa et al. vergence rates. Simulations for the benchmark lid-driven cavity problem are also provided to highlight the benefit of the proposed high-order scheme

    Biochemical components of wild relatives of chickpea confer resistance to pod borer, Helicoverpa armigera

    Get PDF
    Efforts are being made to develop chickpea varieties with resistance to the pod borer, Helicoverpa armigera for reducing pesticide use and minimizing the extent of losses due to this pest. However, only low to moderate levels of resistance have been observed in the cultivated chickpea to this polyphagous pest. Hence, it is important to explore wild relatives as resistance sources to develop insect-resistant cultivars. Therefore, we studied different biochemical components that confer resistance to H. armigera in a diverse array of wild relatives of chickpea. Accessions belonging to wild relatives of chickpea exhibited high levels of resistance to H. armigera as compared to cultivated chickpea genotypes in terms of lower larval survival, pupation and adult emergence, decreased larval and pupal weights, prolonged larval and pupal developmental periods and reduced fecundity of the H. armigera when reared on artificial diet impregnated with lyophilized leaf powders. Amounts of proteins and phenols in different accessions of chickpea wild relatives were significantly and negatively correlated with larval weight, pupation and adult emergence. Phenols showed a negative correlation with pupal weight and fecundity, but positive correlation with pupal period. Total soluble sugars showed a negative correlation with larval period, but positive correlation with pupation and pupal weight, while tannins showed a positive correlation with larval weight, pupation and adult emergence. The flavonoid compounds such as chlorogenic acid, ferulic acid, naringin, 3,4-dihydroxy flavones, quercetin, naringenin, genistein, biochanin-A and formononetin that were identified through HPLC fingerprints, exhibited negative effects on survival and development of H. armigera reared on artificial diet impregnated with lyophilized leaf powders. The wild relatives with diverse mechanisms of resistance conferred by different biochemical components can be used as sources of resistance in chickpea breeding programs to develop cultivars with durable resistance to H. armigera for sustainable crop production

    Proteomics of Plasmodium vivax malaria: new insights, progress and potential

    No full text
    Introduction: Plasmodium vivax has accounted for an enormous share of the global malaria burden in recent years, along with Plasmodium falciparum. The wide distribution of P. vivax and recent evidences of severe and complicated vivax malaria across several endemic regions of the world suggest that this disease may have been more overlooked than benign. While P. falciparum has been extensively studied, P. vivax has received limited research attention owing to its complex nature and absence of a continuous culture system.Areas covered: This review briefly describes the epidemiology of vivax malaria, analyzes challenges towards effective control and summarizes major insights provided by genomics and transcriptomics research in the area. Subsequently, the review provides a detailed description of the applications of proteomics in vivax malaria research, focusing on both host responses and parasite proteomics studies to understand P. vivax biology.Expert commentary: In recent years, proteomics technologies are being used effectively to understand P. vivax biology and the underlying pathogenesis. Technological advances in mass spectrometry configurations, multiomics investigations and emerging strategies such as targeted proteomics may also immensely aid in studying disease severity, improving existing diagnosis and identifying new drug and vaccine targets

    A Proteogenomic Analysis of Haptoglobin in Malaria

    No full text
    ScopeHaptoglobin (Hp), an acute phase inflammatory protein is associated with malaria pathogenesis in several proteomics and genomics studies. The Hp gene has two co-dominant alleles: Hp1 and Hp2 that produce three genotypes: Hp1/Hp1, Hp1/Hp2 and Hp2/Hp2. Experimental designIn this study, validation of the proteomics data with Multiple Reaction Monitoring Mass Spectroscopy (MRM-MS) is performed and the association of the Hp gene variants with severe, non-severe malaria and community (healthy) controls using genotyping PCRs and DNA sequencing is analysed. ResultsHighly significant values of Hp is observed in the MRM assay that show a correlation with severity of malaria and is clearly distinguished from another febrile disease, dengue. Moreover, the Hp2/Hp2 genotype is seen in high percentages in non-severe malaria patients (74%) and community controls (72%) whereas patients diagnosed with severe malaria show only (31%) of this genotype. Sequencing of the Hp promoter region reveals three SNPs along with 10 unique haplotypes, out of which five are associated with non-severe and three with severe malaria populations ((2)=130; df=18; p<0.0001). Conclusion and clinical relevanceThis proteo-genomic study focuses on the correlation of the Hp protein and gene with malaria, thus highlighting the pivotal role of this acute phase immune gene in malaria pathogenesis

    Laparoscopic release of median arcuate ligament

    No full text
    Median arcuate ligament (MAL) syndrome, also known as the celiac axis compression syndrome, is rare. It is a diagnosis of exclusion, characterised by the clinical triad of postprandial abdominal pain, weight loss and vomiting. Computed tomographic angiography is the gold standard for making the diagnosis of MAL and colour Doppler is essential to confirm the diagnosis. The classic management involves the surgical division of the MAL fibres. We report successful management of two patients diagnosed as MAL syndrome and treated by laparoscopic release of the MAL

    Proteomic analysis of Plasmodium falciparum induced alterations in humans from different endemic regions of India to decipher malaria pathogenesis and identify surrogate markers of severity

    No full text
    India significantly contributes to the global malaria burden and has the largest population in the world at risk of malaria. This study aims to analyze alterations in the human serum proteome as a consequence of non-severe and severe infections by the malaria parasite Plasmodium falciparum to identify markers related to disease severity and to obtain mechanistic insights about disease pathogenesis and host immune responses. In discovery phase of the study, a comprehensive quantitative proteomic analysis was performed using gel-based (2D-DIGE) and gel-free (iTRAQ) techniques on two independent mass spectrometry platforms (ESI-Q-TOF and Q-Exactive mass spectrometry), and selected targets were validated by ELISA. Proteins showing altered serum abundance in falciparum malaria patients revealed the modulation of different physiological pathways including chemokine and cytokine signaling, IL-12 signaling and production in macrophages, complement cascades, blood coagulation, and protein ubiquitination pathways. Some muscle related and cytoskeletal proteins such as titin and galectin-3-binding protein were found to be up-regulated in severe malaria patients. Hemoglobin levels and platelet counts were also found to be drastically lower in severe malaria patients. Identified proteins including serum amyloid A, C-reactive protein, apolipoprotein E and haptoglobin, which exhibited sequential alterations in their serum abundance in different severity levels of malaria, could serve as potential predictive markers for disease severity. To the best of our information, we report here the first comprehensive analysis describing the serum proteomic alterations observed in severe P. falciparum infected patients from different malaria endemic regions of India. This article is part of a Special Issue entitled: Proteomics in India. (C) 2015 Elsevier B.V. All rights reserved
    corecore