14 research outputs found

    Circulating MicroRNAs Are Not Eliminated by Hemodialysis

    Get PDF
    BACKGROUND: Circulating microRNAs are stably detectable in serum/plasma and other body fluids. In patients with acute kidney injury on dialysis therapy changes of miRNA patterns had been detected. It remains unclear if and how the dialysis procedure itself affects circulating microRNA level. METHODS: We quantified miR-21 and miR-210 by quantitative RT-PCR in plasma of patients with acute kidney injury requiring dialysis and measured pre- and post-dialyser miRNA levels as well as their amount in the collected spent dialysate. Single treatments using the following filters were studied: F60 S (1.3 m(2), Molecular Weight Cut Off (MWCO): 30 kDa, n = 8), AV 1000 S (1.8 m(2), MWCO: 30 kDa, n = 6) and EMiC 2 (1.8 m(2), MWCO: 40 kDa, n = 6). RESULTS: Circulating levels of miR-21 or -210 do not differ between pre- and post-dialyzer blood samples independently of the used filter surface and pore size: miR-21: F60S: p = 0.35, AV 1000 S p = 1.0, EMiC2 p = 1.0; miR-210: F60S: p = 0.91, AV 1000 S p = 0.09, EMiC2 p = 0.31. Correspondingly, only traces of both miRNAs could be found in the collected spent dialysate and ultrafiltrate. CONCLUSIONS: In patients with acute kidney injury circulating microRNAs are not removed by dialysis. As only traces of miR-21 and -210 are detected in dialysate and ultrafiltrate, microRNAs in the circulation are likely to be transported by larger structures such as proteins and/or microvesicles. As miRNAs are not affected by dialysis they might be more robust biomarkers of acute kidney injury

    Involvement of microRNAs in physiological and pathological processes in the lung

    Get PDF
    To date, at least 900 different microRNA (miRNA) genes have been discovered in the human genome. These short, single-stranded RNA molecules originate from larger precursor molecules that fold to produce hairpin structures, which are subsequently processed by ribonucleases Drosha/Pasha and Dicer to form mature miRNAs. MiRNAs play role in the posttranscriptional regulation of about one third of human genes, mainly via degradation of target mRNAs. Whereas the target mRNAs are often involved in the regulation of diverse physiological processes ranging from developmental timing to apoptosis, miRNAs have a strong potential to regulate fundamental biological processes also in the lung compartment. However, the knowledge of the role of miRNAs in physiological and pathological conditions in the lung is still limited. This review, therefore, summarizes current knowledge of the mechanism, function of miRNAs and their contribution to lung development and homeostasis. Besides the involvement of miRNAs in pulmonary physiological conditions, there is evidence that abnormal miRNA expression may lead to pathological processes and development of various pulmonary diseases. Next, the review describes current state-of-art on the miRNA expression profiles in smoking-related diseases including lung cancerogenesis, in immune system mediated pulmonary diseases and fibrotic processes in the lung. From the current research it is evident that miRNAs may play role in the posttranscriptional regulation of key genes in human pulmonary diseases. Further studies are, therefore, necessary to explore miRNA expression profiles and their association with target mRNAs in human pulmonary diseases

    MicroRNAs Profiling in Murine Models of Acute and Chronic Asthma: A Relationship with mRNAs Targets

    Get PDF
    BACKGROUND: miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: In order to establish a miRNAs expression profile in lung tissue, mice were sensitized and challenged with ovalbumin mimicking acute, intermediate and chronic human asthma. Levels of lung miRNAs were profiled by microarray and in silico analyses were performed to identify potential mRNA targets and to point out signalling pathways and biological processes regulated by miRNA-dependent mechanisms. Fifty-eight, 66 and 75 miRNAs were found to be significantly modulated at short-, intermediate- and long-term challenge, respectively. Inverse correlation with the expression of potential mRNA targets identified mmu-miR-146b, -223, -29b, -29c, -483, -574-5p, -672 and -690 as the best candidates for an active implication in asthma pathogenesis. A functional validation assay was performed by cotransfecting in human lung fibroblasts (WI26) synthetic miRNAs and engineered expression constructs containing the coding sequence of luciferase upstream of the 3'UTR of various potential mRNA targets. The bioinformatics analysis identified miRNA-linked regulation of several signalling pathways, as matrix metalloproteinases, inflammatory response and TGF-β signalling, and biological processes, including apoptosis and inflammation. CONCLUSIONS/SIGNIFICANCE: This study highlights that specific miRNAs are likely to be involved in asthma disease and could represent a valuable resource both for biological makers identification and for unveiling mechanisms underlying the pathogenesis of asthma
    corecore