95 research outputs found

    Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The treatment of oral squamous cell carcinomas (OSCC) and human osteosarcoma (HOS) includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang) on OSCC and HOS cell lines.</p> <p>Methods</p> <p>Several concentrations of Tualang honey (1% - 20%) were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit.</p> <p>Results</p> <p>Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC<sub><b>50</b></sub>) for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner.</p> <p>Conclusion</p> <p>Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.</p

    The effects of tualang honey on female reproductive organs, tibia bone and hormonal profile in ovariectomised rats - animal model for menopause

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Honey is a highly nutritional natural product that has been widely used in folk medicine for a number of therapeutic purposes. We evaluated whether Malaysian Tualang honey (AgroMas, Malaysia) was effective in reducing menopausal syndrome in ovariectomised female rats; an animal model for menopause.</p> <p>Methods</p> <p>The rats were divided into two control groups and three test groups. The control groups were sham-operated (SH) and ovariectomised (OVX) rats. The SH and OVX control rats were fed on 0.5 ml of distill water. The rats in the test groups were fed with low dose 0.2 g/kg (THL), medium dose, 1.0 g/kg (THM) and high dose 2.0 g/kg (THH) of Tualang honey in 0.5 ml of distill water. The administration was given by oral gavage once daily for 2 weeks. The reproductive organs (uterus and vagina), tibia bone and aorta were taken for histopathological examination while serum for hormonal assays.</p> <p>Results</p> <p>Administration of Tualang honey for 2 weeks to ovariectomised rats significantly increased the weight of the uterus and the thickness of vaginal epithelium, restored the morphology of the tibia bones and reduced the body weight compared to rats in the ovariectomised group. The levels of estradiol and progesterone, in honey treated groups were markedly lower than that in the OVX group. At low doses (0.2 g/kg; THL group) of Tualang honey there was an increased in serum free testosterone levels compared to OVX group (P < 0.01). Progesterone concentrations was significantly decreased in the OVX group as compared to SHAM group (P < 0.05).</p> <p>Conclusions</p> <p>Tualang honey was shown to have beneficial effects on menopausal (ovariectomised) rats by preventing uterine atrophy, increased bone density and suppression of increased body weight. Honey could be an alternative to HRT.</p

    Honey health benefits and uses in medicine

    Get PDF
    The generation of reactive oxygen species (ROS) and other free radicals during metabolism is an essential and normal process that ideally is compensated through the antioxidant system. However, due to many environmental, lifestyle, and pathological situations, free radicals and oxidants can be produced in excess, resulting in oxidative damage of biomolecules (e.g., lipids, proteins, and DNA). This plays a major role in the development of chronic and degenerative illness such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, cardiovascular, and neurodegenerative diseases (Pham-Huy et al. 2008; Willcox et al. 2004). The human body has several mechanisms to counteract oxidative stress by producing antioxidants, which are either naturally synthetized in situ, or externally supplied through foods, and/or supplements (Pham-Huy et al. 2008).info:eu-repo/semantics/publishedVersio

    Targeting Lysophosphatidic Acid Signaling Retards Culture-Associated Senescence of Human Marrow Stromal Cells

    Get PDF
    Marrow stromal cells (MSCs) isolated from mesenchymal tissues can propagate in vitro to some extent and differentiate into various tissue lineages to be used for cell-based therapies. Cellular senescence, which occurs readily in continual MSC culture, leads to loss of these characteristic properties, representing one of the major limitations to achieving the potential of MSCs. In this study, we investigated the effect of lysophosphatidic acid (LPA), a ubiquitous metabolite in membrane phospholipid synthesis, on the senescence program of human MSCs. We show that MSCs preferentially express the LPA receptor subtype 1, and an abrogation of the receptor engagement with the antagonistic compound Ki16425 attenuates senescence induction in continually propagated human MSCs. This anti-aging effect of Ki16425 results in extended rounds of cellular proliferation, increased clonogenic potential, and retained plasticity for osteogenic and adipogenic differentiation. Expressions of p16Ink4a, Rb, p53, and p21Cip1, which have been associated with cellular senescence, were all reduced in human MSCs by the pharmacological inhibition of LPA signaling. Disruption of this signaling pathway was accompanied by morphological changes such as cell thinning and elongation as well as actin filament deformation through decreased phosphorylation of focal adhesion kinase. Prevention of LPA receptor engagement also promoted ubiquitination-mediated c-Myc elimination in MSCs, and consequently the entry into a quiescent state, G0 phase, of the cell cycle. Collectively, these results highlight the potential of pharmacological intervention against LPA signaling for blunting senescence-associated loss of function characteristic of human MSCs

    Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)

    Get PDF
    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement

    An overview on the role of dietary phenolics for the treatment of cancers

    Full text link
    corecore