543 research outputs found

    Nanotechnology - Revolutionary phase in prospective of Ayurvedic medicine

    Get PDF
    Nanotechnology based on Nanoscience is the technology of 21st century; the terms Nanotechnology and Nanoscience are often used synonymously. The literal meaningof ‘nano’ is ‘dwarf’ or an abnormally short person. However, in scientific language it is a billionth (10-9) part of some unit scale, example nano meter or nano second means 10-9 meters or 10-9 seconds respectively. The Nano is the newly used word but in Ayurveda in the form of Bhasma, the Nano particle of metals & minerals are being used as an effective medicine. It is the need of the moment for Ayurveda to conduct the researches to extend the use of our Nano medicines (Bhasma) in various aspects like detection & diagnosis of the diseases to make them more effective in serving the society. The evaluation of engineered nanoparticles in terms of Ayurvedic Rasa Shastra norms for Bhasma in terms of various physico-chemical attributes can be useful

    Effect of Cationic Surfactant Head Groups on Synthesis, Growth and Agglomeration Behavior of ZnS Nanoparticles

    Get PDF
    Colloidal nanodispersions of ZnS have been prepared using aqueous micellar solution of two cationic surfactants of trimethylammonium/pyridinium series with different head groups i.e., cetyltrimethylammonium chloride (CTAC) and cetyltrimethylpyridinium chloride (CPyC). The role of these surfactants in controlling size, agglomeration behavior and photophysical properties of ZnS nanoparticles has been discussed. UV–visible spectroscopy has been carried out for determination of optical band gap and size of ZnS nanoparticles. Transmission electron microscopy and dynamic light scattering were used to measure sizes and size distribution of ZnS nanoparticles. Powder X-ray analysis (Powder XRD) reveals the cubic structure of nanocrystallite in powdered sample. The photoluminescence emission band exhibits red shift for ZnS nanoparticles in CTAC compared to those in CPyC. The aggregation behavior in two surfactants has been compared using turbidity measurements after redispersing the nanoparticles in water. In situ evolution and growth of ZnS nanoparticles in two different surfactants have been compared through time-dependent absorption behavior and UV irradiation studies. Electrical conductivity measurements reveal that CPyC micelles better stabilize the nanoparticles than that of CTAC

    Therapeutic Potential of Phytoconstituents in Management of Alzheimer’s Disease

    Full text link
    Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer’s disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer’s and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.</jats:p

    Ethnobotany in the Nepal Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indigenous knowledge has become recognized worldwide not only because of its intrinsic value but also because it has a potential instrumental value to science and conservation. In Nepal, the indigenous knowledge of useful and medicinal plants has roots in the remote past.</p> <p>Methods</p> <p>The present study reviews the indigenous knowledge and use of plant resources of the Nepal Himalayas along the altitudinal and longitudinal gradient. A total of 264 studies focusing on ethnobotany, ethnomedicine and diversity of medicinal and aromatic plants, carried out between 1979 and 2006 were consulted for the present analysis. In order to cross check and verify the data, seven districts of west Nepal were visited in four field campaigns.</p> <p>Results</p> <p>In contrast to an average of 21–28% ethnobotanically/ethnomedicinally important plants reported for Nepal, the present study found that up to about 55% of the flora of the study region had medicinal value. This indicates a vast amount of undocumented knowledge about important plant species that needs to be explored and documented. The richness of medicinal plants decreased with increasing altitude but the percentage of plants used as medicine steadily increased with increasing altitude. This was due to preferences given to herbal remedies in high altitude areas and a combination of having no alternative choices, poverty and trust in the effectiveness of folklore herbal remedies.</p> <p>Conclusion</p> <p>Indigenous knowledge systems are culturally valued and scientifically important. Strengthening the wise use and conservation of indigenous knowledge of useful plants may benefit and improve the living standard of poor people.</p

    Bortezomib in combination with celecoxib in patients with advanced solid tumors: a phase I trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>COX-2 inhibitors, such as celecoxib, and ubiquitin-proteasome pathway inhibitors, such as bortezomib, can down-regulate NF-κB, a transcription factor implicated in tumor growth. The objective of this study was to determine the maximum tolerated dose and dose-limiting toxicities of bortezomib in combination with celecoxib in patients with advanced solid tumors.</p> <p>Methods</p> <p>Patients received escalating doses of bortezomib either on a weekly schedule (days 1, 8, 15, 22, and 29 repeated every 42 days) or on a twice-weekly administration schedule (days 1, 4, 8, and 11 repeated every 21 days), in combination with escalating doses of celecoxib twice daily throughout the study period from 200 mg to 400 mg twice daily.</p> <p>Results</p> <p>No dose-limiting toxicity was observed during the study period. Two patients had stable disease lasting for four and five months each, and sixteen patients developed progressive disease.</p> <p>Conclusion</p> <p>The combination of bortezomib and celecoxib was well tolerated, without dose limiting toxicities observed throughout the dosing ranges tested, and will be studied further at the highest dose levels investigated.</p> <p>Trial registration number</p> <p>NCT00290680.</p
    • …
    corecore