7,411 research outputs found

    Numerical Hermitian Yang-Mills Connections and Kahler Cone Substructure

    Get PDF
    We further develop the numerical algorithm for computing the gauge connection of slope-stable holomorphic vector bundles on Calabi-Yau manifolds. In particular, recent work on the generalized Donaldson algorithm is extended to bundles with Kahler cone substructure on manifolds with h^{1,1}>1. Since the computation depends only on a one-dimensional ray in the Kahler moduli space, it can probe slope-stability regardless of the size of h^{1,1}. Suitably normalized error measures are introduced to quantitatively compare results for different directions in Kahler moduli space. A significantly improved numerical integration procedure based on adaptive refinements is described and implemented. Finally, an efficient numerical check is proposed for determining whether or not a vector bundle is slope-stable without computing its full connection.Comment: 38 pages, 10 figure

    Magnetic Properties of a Superconductor with no Inversion Symmetry

    Full text link
    We study the magnetic properties of a superconductor in a crystal without zzz \to -z symmetry, in particular how the lack of this symmetry exhibits itself. We show that, though the penetration depth itself shows no such effect, for suitable orientation of magnetic field, there is a magnetic field discontinuity at the interface which shows this absence of symmetry. The magnetic field profile of a vortex in the xyx-y plane is shown to be identical to that of an ordinary anisotropic superconductor except for a shift in the z-z direction by κ~λx{\tilde \kappa} \lambda_x (see errata). For a vortex along zz, there is an induced magnetization along the radial direction.Comment: J. Low Temp. Physics, 140, 67 (2005); with Errat

    WESTT (Workload, Error, Situational Awareness, Time and Teamwork): An analytical prototyping system for command and control

    Get PDF
    Modern developments in the use of information technology within command and control allow unprecedented scope for flexibility in the way teams deal with tasks. These developments, together with the increased recognition of the importance of knowledge management within teams present difficulties for the analyst in terms of evaluating the impacts of changes to task composition or team membership. In this paper an approach to this problem is presented that represents team behaviour in terms of three linked networks (representing task, social network structure and knowledge) within the integrative WESTT software tool. In addition, by automating analyses of workload and error based on the same data that generate the networks, WESTT allows the user to engage in the process of rapid and iterative “analytical prototyping”. For purposes of illustration an example of the use of this technique with regard to a simple tactical vignette is presented

    Classical orbital paramagnetism in non-equilibrium steady state

    Full text link
    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be {\it paramagnetic} for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.Comment: 6 pages, 4 figures, Has appeared in Journal of Astrophysics and Astronomy special issue on 'Physics of Neutron Stars and Related Objects', celebrating the 75th birth-year of G. Srinivasa

    Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories

    Get PDF
    A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.Comment: 52 pages, 15 figures. LaTex formatting of figures corrected in version 2
    corecore