12 research outputs found

    On the potential application of DFT methods in predicting the interaction-induced electric properties of molecular complexes. Molecular H-bonded chains as a case of study

    Get PDF
    A detailed analysis of the selected DFT functionals for the calculations of interaction-induced dipole moment, polarizability and first-order hyperpolarizability has been carried out. The hydrogen-bonded model chains consisting of HF, H2CO and H3N molecules have been chosen as a case study. The calculations of the components of the static electric properties using the diffuse Dunning’s basis set (aug-cc-pVDZ) have been performed employing different types of density functionals (B3LYP, LC-BLYP, PBE0, M06-2X and CAM-B3LYP). Obtained results have been compared with those gained at the CCSD(T) level of theory. The counterpoise correction scheme, namely site-site function counterpoise, has been applied in order to eliminate basis set superposition error. The performed tests allow to conclude that the DFT functionals can provide a useful tool for prediction of the interaction-induced electric properties, however a caution has to be urged to their decomposition to the two- and many-body terms

    Calculation of the visible-UV absorption spectra of hydrogen sulfide, bisulfide, polysulfides, and As and Sb sulfides, in aqueous solution

    Get PDF
    Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)(3), As(SH)(2)S(- )and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides S(n)(2-), n = 2–6, the bisulfide anion, SH(-), hydrogen sulfide, H(2)S and the sulfanes, S(n)H(2), n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH(- )to H(2)S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S(8 )with SH(- )to produce the polysulfides, S(n)H(-), n = 2–6. Our results are in excellent agreement with available experimental data, and support the existence of a S(6 )species

    Probing the structural evolution of ruthenium doped germanium clusters: Photoelectron spectroscopy and density functional theory calculations

    Get PDF
    We present a combined experimental and theoretical study of ruthenium doped germanium clusters, RuGen- (n = 3-12), and their corresponding neutral species. Photoelectron spectra of RuGen- clusters are measured at 266 nm. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) are obtained. Unbiased CALYPSO structure searches confirm the low-lying structures of anionic and neutral ruthenium doped germanium clusters in the size range of 3 8, the Ru atom in RuGen-/0 clusters is absorbed endohedrally in the Ge cage. The theoretically predicted vertical and adiabatic detachment energies are in good agreement with the experimental measurements. The excellent agreement between DFT calculations and experiment enables a comprehensive evaluation of the geometrical and electronic structures of ruthenium doped germanium clusters

    Nonlinear optical properties of C-60 with explicit time-dependent electron dynamics

    No full text
    An explicit electron dynamics approach has been used to calculate the nonlinear optical properties of C-60 and its radical anion. An external perturbation, in the form of an oscillating electric field, induces the time-evolution of the molecular wavefunction. The time-averaged instantaneous dipole moment of the systems gives the molecular response to perturbations of varying field intensities and frequency of oscillation. The polarizabilities and the second-order hyperpolarizabilties have been calculated and are in good qualitative agreement with experimentally available data. In line with previous theoretical and experimental studies, the nonlinear effect is enhanced for the radical species

    Hohenberg-Kohn-Sham Density Functional Theory

    No full text

    Hohenberg-Kohn-Sham density functional theory

    No full text
    The emergence of a family of computational methods, known under the label ‘density functional theory∈dex theory! density functional ' or ‘DFT', revolutionalized the field of computer modelling of complex molecular systems. Many computational schemes belonging to the DFT family are currently in use. Some of them are designed to be universal (nonempirical) whereas other to treat specific systems and/or properties (empirical). This review starts with the introduction of the formal elements underlying all these methods: Hohenberg-Kohn theorems∈dex theorem! Hohenberg-Kohn, reference system∈dex reference system of noninteracting electrons∈dex reference system! noninteracting electrons, exchange-correlation energy∈dex energy functional! exchange-correlation functional∈dex functional, and the Kohn-Sham equations∈dex equation! Kohn-Sham. The main roads to approximate the exchange-correlation-energy functional based on: local density approximation∈dex approximation! local density (LDA), generalized gradient approximation∈dex approximation! generalized gradient (GGA), meta-GGA∈dex energy functional! exchange-correlation! meta-GGA, and adiabatic connection∈dex adiabatic connection formula (hybrid functionals∈dex energy functional! exchange-correlation! hybrid ), are outlined. The performance of these approximations in describing molecular properties of relevance to intermolecular interaction∈dex interactions! intermolecular s and their interactions with environment in condensed phase (ionization potential∈dex potential! ionization s, electron∈dex electron affinities∈dex electron! affinity, electric moments∈dex electric moment, polarizabilities∈dex polarizability ) is reviewed. Developments concerning new methods situated within the general Hohenberg-Kohn-Sham framework or closely related to it are overviewed in the last sectio
    corecore