360 research outputs found

    Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells

    Get PDF
    It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions

    Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation

    Get PDF
    BACKGROUND: Epicardial adipose tissue (EAT) directly overlies the myocardium, with changes in its morphology and volume associated with myriad cardiovascular and metabolic diseases. However, EAT’s immune structure and cellular characterization remain incompletely described. We aimed to define the immune phenotype of EAT in humans and compare such profiles across lean, obese, and diabetic patients. METHODS: We recruited 152 patients undergoing open-chest coronary artery bypass grafting (CABG), valve repair/replacement (VR) surgery, or combined CABG/VR. Patients’ clinical and biochemical data and EAT, subcutaneous adipose tissue (SAT), and preoperative blood samples were collected. Immune cell profiling was evaluated by flow cytometry and complemented by gene expression studies of immune mediators. Bulk RNA-Seq was performed in EAT across metabolic profiles to assess whole-transcriptome changes observed in lean, obese, and diabetic groups. RESULTS: Flow cytometry analysis demonstrated EAT was highly enriched in adaptive immune (T and B) cells. Although overweight/obese and diabetic patients had similar EAT cellular profiles to lean control patients, the EAT exhibited significantly (P ≤ 0.01) raised expression of immune mediators, including IL-1, IL-6, TNF-α, and IFN-γ. These changes were not observed in SAT or blood. Neither underlying coronary artery disease nor the presence of hypertension significantly altered the immune profiles observed. Bulk RNA-Seq demonstrated significant alterations in metabolic and inflammatory pathways in the EAT of overweight/obese patients compared with lean controls. CONCLUSION: Adaptive immune cells are the predominant immune cell constituent in human EAT and SAT. The presence of underlying cardiometabolic conditions, specifically obesity and diabetes, rather than cardiac disease phenotype appears to alter the inflammatory profile of EAT. Obese states markedly alter EAT metabolic and inflammatory signaling genes, underlining the impact of obesity on the EAT transcriptome profile. FUNDING: Barts Charity MGU0413, Abbott, Medical Research Council MR/T008059/1, and British Heart Foundation FS/13/49/30421 and PG/16/79/32419

    Postnatal dexamethasone, respiratory and neurodevelopmental outcomes at two years in babies born extremely preterm.

    Get PDF
    IMPORTANCE: Postnatal dexamethasone is associated with reduction in bronchopulmonary dysplasia. There remains, however, concern that its short-term benefits are accompanied by long-term adverse effects e.g. poorer neurodevelopmental outcomes. OBJECTIVE: Our aim was to determine the effects of administration of postnatal dexamethasone on respiratory and neurodevelopmental outcome at two years of age after adjusting for neonatal and infant risk factors. MATERIALS AND METHODS: The study included 412 infants born at 23-28 weeks of gestation, 29% had received postnatal dexamethasone. Two outcomes were examined, respiratory hospital admissions in the past 12 months and neurodevelopmental impairment. Logistic regression, adjusted for sex, birthweight z-score, gestation, maternal smoking, oxygen dependency at 36 weeks, airleak, patent ductus arteriosus, pulmonary haemorrhage, major ultrasound abnormality, mode of ventilation and age at assessment, was undertaken. RESULTS: After adjustment, postnatal dexamethasone was associated with significantly increased proportions of both respiratory hospital readmission: (0.35 vs 0.15, difference = 0.20; 95% CI: 0.08, 0.31) and neurodevelopmental impairment (0.59 vs 0.45, difference = 0.14; 95% CI: 0.02, 0.26). CONCLUSIONS: Postnatal dexamethasone use in extremely preterm infants is associated with increased risks of respiratory hospital admissions and neurodevelopmental impairment. These associations were not explained by excess neonatal morbidities

    Localization of Mineralocorticoid Receptors at Mammalian Synapses

    Get PDF
    In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids

    A Metachronous splenic metastases from esophageal cancer: a case report

    Get PDF
    The spleen is an infrequent site for metastatic lesions, and solitary splenic metastases from squamous cell carcinoma of the esophagus are very rare: only 4 cases have been reported thus far. These lesions are whitish nodules that are macroscopically and radiologically similar to primary splenic lymphomas. We report a case of metachronous splenic metastases from esophageal cancer and multiple splenic abscesses, which developed nine months after apparently curative esophagectomy without adjuvant chemotherapy. The patient underwent splenectomy dissection followed by adjuvant chemotherapy, but liver and skin metastases developed, and the patient died 9 months later

    Conceptualizing pathways linking women's empowerment and prematurity in developing countries.

    Get PDF
    BackgroundGlobally, prematurity is the leading cause of death in children under the age of 5. Many efforts have focused on clinical approaches to improve the survival of premature babies. There is a need, however, to explore psychosocial, sociocultural, economic, and other factors as potential mechanisms to reduce the burden of prematurity. Women's empowerment may be a catalyst for moving the needle in this direction. The goal of this paper is to examine links between women's empowerment and prematurity in developing settings. We propose a conceptual model that shows pathways by which women's empowerment can affect prematurity and review and summarize the literature supporting the relationships we posit. We also suggest future directions for research on women's empowerment and prematurity.MethodsThe key words we used for empowerment in the search were "empowerment," "women's status," "autonomy," and "decision-making," and for prematurity we used "preterm," "premature," and "prematurity." We did not use date, language, and regional restrictions. The search was done in PubMed, Population Information Online (POPLINE), and Web of Science. We selected intervening factors-factors that could potentially mediate the relationship between empowerment and prematurity-based on reviews of the risk factors and interventions to address prematurity and the determinants of those factors.ResultsThere is limited evidence supporting a direct link between women's empowerment and prematurity. However, there is evidence linking several dimensions of empowerment to factors known to be associated with prematurity and outcomes for premature babies. Our review of the literature shows that women's empowerment may reduce prematurity by (1) preventing early marriage and promoting family planning, which will delay age at first pregnancy and increase interpregnancy intervals; (2) improving women's nutritional status; (3) reducing domestic violence and other stressors to improve psychological health; and (4) improving access to and receipt of recommended health services during pregnancy and delivery to help prevent prematurity and improve survival of premature babies.ConclusionsWomen's empowerment is an important distal factor that affects prematurity through several intervening factors. Improving women's empowerment will help prevent prematurity and improve survival of preterm babies. Research to empirically show the links between women's empowerment and prematurity is however needed

    Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions

    Get PDF
    The application of live cell imaging allows direct visualization of the dynamic interactions between cells of the immune system. Some preliminary observations challenge long-held beliefs about immune responses to microorganisms; however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. This paper outlines a method that advances live cell imaging by integrating a spinning disk confocal microscope with an optical trap, also known as an optical tweezer, in order to provide exquisite spatial and temporal control of pathogenic organisms and place them in proximity to host cells, as determined by the operator. Polymeric beads and live, pathogenic organisms (Candida albicans and Aspergillus fumigatus) were optically trapped using non-destructive forces and moved adjacent to living cells, which subsequently phagocytosed the trapped particle. High resolution, transmitted light and fluorescence-based movies established the ability to observe early events of phagocytosis in living cells. To demonstrate the broad applicability of this method to immunological studies, anti-CD3 polymeric beads were also trapped and manipulated to form synapses with T cells in vivo, and time-lapse imaging of synapse formation was also obtained. By providing a method to exert fine control of live pathogens with respect to immune cells, cellular interactions can be captured by fluorescence microscopy with minimal perturbation to cells and can yield powerful insight into early responses of innate and adaptive immunity.National Institute of Biomedical Imaging and Bioengineering (U.S.) (grant T32EB006348)Massachusetts General Hospital (Department of Medicine Internal Funds)Center for Computational and Integrative Biology (Development fund)Center for Computational and Integrative Biology (AI062773)Center for Computational and Integrative Biology (grant AI062773)Center for Computational and Integrative Biology (grant DK83756)Center for Computational and Integrative Biology (grant DK 043351)National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (grant AI057999

    Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours

    Get PDF
    The molecular mechanisms that underlie the development of squamous cell skin cancers (SSC) are poorly understood. We have used oligonucleotide microarrays to compare the differences in cellular gene expression between a series of keratinocyte cell that mimic disease progression with the aim of identifying genes that may potentially contribute towards squamous cell carcinoma (SCC) progression in vivo, and in particular to identify markers that may serve as potential therapeutic targets for SCC treatment. Gene expression differences were corroborated by polymerase chain reaction and Western blotting. We identified Axl, a receptor tyrosine kinase with transforming potential that has also been shown to have a role in cell survival, adhesion and chemotaxis, was upregulated in vitro in SCC-derived cells compared to premalignant cells. Extending the investigation to tumour biopsies showed that the Axl protein was overexpressed in vivo in a series of SCCs

    The making of a mammalian peroxisome, version 2.0: mitochondria get into the mix

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.A recent report from the laboratory of Heidi McBride (McGill University) presents a role for mitochondria in the de novo biogenesis of peroxisomes in mammalian cells (1). Peroxisomes are essential organelles responsible for a wide variety of biochemical functions, from the generation of bile, to plasmalogen synthesis, reduction of peroxides, and the oxidation of very long chain fatty acids (2). Like mitochondria, peroxisomes proliferate primarily through growth and division of pre-existing peroxisomes (3-6). However, unlike mitochondria, peroxisomes do not fuse (5,7); further, and perhaps most importantly, they can also be born de novo, a process thought to occur through the generation of pre-peroxisomal vesicles that originate from the endoplasmic reticulum (reviewed in (8,9). De novo peroxisome biogenesis has been extensively studies in yeast, with a major focus on the role of the ER in this process. Comprehensive studies in mammalian cells are, however, scarce (5,10-12). By exploiting patient cells lacking mature peroxisomes, Sugiura et al. (1) now assign a role to ER and mitochondria in de novo mammalian peroxisome biogenesis by showing that the formation of immature preperoxisomes occurs through the fusion of Pex3- / Pex14-containing mitochondriaderived vesicles with Pex16-containing ER-derived vesicles

    Oncological outcome and patient satisfaction with skin-sparing mastectomy and immediate breast reconstruction: a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The management of early breast cancer (BC) with skin-sparing mastectomy (SSM) and immediate breast reconstruction (IBR) is not based on level-1 evidence. In this study, the oncological outcome, post-operative morbidity and patients' satisfaction with SSM and IBR using the latissimus dorsi (LD) myocutaneous flap and/or breast prosthesis is evaluated.</p> <p>Methods</p> <p>137 SSMs with IBR (10 bilateral) were undertaken in 127 consecutive women, using the LD flap plus implant (n = 85), LD flap alone (n = 1) or implant alone (n = 51), for early BC (n = 130) or prophylaxis (n = 7). Nipple reconstruction was performed in 69 patients, using the trefoil local flap technique (n = 61), nipple sharing (n = 6), skin graft (n = 1) and Monocryl mesh (n = 1). Thirty patients underwent contra-lateral procedures to enhance symmetry, including 19 augmentations and 11 mastopexy/reduction mammoplasties. A linear visual analogue scale was used to assess patient satisfaction with surgical outcome, ranging from 0 (not satisfied) to 10 (most satisfied).</p> <p>Results</p> <p>After a median follow-up of 36 months (range = 6-101 months) there were no local recurrences. Overall breast cancer specific survival was 99.2%, 8 patients developed distant disease and 1 died of metastatic BC. There were no cases of partial or total LD flap loss. Morbidities included infection, requiring implant removal in 2 patients and 1 patient developed marginal ischaemia of the skin envelope. Chemotherapy was delayed in 1 patient due to infection. Significant capsule formation, requiring capsulotomy, was observed in 85% of patients who had either post-mastectomy radiotherapy (PMR) or prior radiotherapy (RT) compared with 13% for those who had not received RT. The outcome questionnaire was completed by 82 (64.6%) of 127 patients with a median satisfaction score of 9 (range = 5-10).</p> <p>Conclusion</p> <p>SSM with IBR is associated with low morbidity, high levels of patient satisfaction and is oncologically safe for T(is), T1 and T2 tumours without extensive skin involvement.</p
    corecore