13 research outputs found

    Dysfunctional GABAergic inhibition in the prefrontal cortex leading to "psychotic" hyperactivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The GABAergic system in the brain seems to be dysfunctional in various psychiatric disorders. Many studies have suggested so far that, in schizophrenia patients, GABAergic inhibition is selectively but consistently reduced in the prefrontal cortex (PFC).</p> <p>Results</p> <p>This study used a computational model of the PFC to investigate the dynamics of the PFC circuit with and without chandelier cells and other GABAergic interneurons. The inhibition by GABAergic interneurons other than chandelier cells effectively regulated the PFC activity with rather low or modest levels of dopaminergic neurotransmission. This activity of the PFC is associated with normal cognitive functions and has an inverted-U shaped profile of dopaminergic modulation. In contrast, the chandelier cell-type inhibition affected only the PFC circuit dynamics in hyperdopaminergic conditions. Reduction of chandelier cell-type inhibition resulted in bistable dynamics of the PFC circuit, in which the upper stable state is associated with a hyperactive mode. When both types of inhibition were reduced, this hyperactive mode and the conventional inverted-U mode merged.</p> <p>Conclusion</p> <p>The results of our simulation suggest that, in schizophrenia, a reduction of GABAergic inhibition increases vulnerability to psychosis by (i) producing the hyperactive mode of the PFC with hyperdopaminergic neurotransmission by dysfunctional chandelier cells and (ii) increasing the probability of the transition to the hyperactive mode from the conventional inverted-U mode by dysfunctional GABAergic interneurons.</p

    Neural responses to cues paired with methamphetamine in healthy volunteers

    No full text
    Drug cues, or conditioned responses to stimuli paired with drugs, are widely believed to promote drug use. The acquisition of these conditioned responses has been well characterized in laboratory animals: neutral stimuli paired with drugs elicit conditioned responses resembling the motivational and incentive properties of the drug itself. However, few studies have examined acquisition of conditioning, or the nature of the conditioned response, in humans. In this study, we used fMRI to examine neural responses to stimuli that had been paired with methamphetamine or placebo in healthy young adults. Participants first underwent four conditioning sessions in which visual-auditory stimuli were paired with either methamphetamine (20 mg, oral) or placebo. Then on a drug-free test day, the stimuli were presented during an fMRI scan to assess neural responses to the stimuli. We hypothesized that the stimuli would elicit drug-like brain activity, especially in regions related to reward. Instead, we found that the methamphetamine-paired stimuli, compared to placebo-paired stimuli, produced greater activation in regions related to visual and auditory processing, consistent with the drugs unconditioned effects on sensory processing. This is the first study to demonstrate conditioned neural responses to drug-paired stimuli after just two pairings of methamphetamine in healthy adults. The study also illustrates that conditioned responses may develop to unexpected components of the drugs effects.Funding Agencies|NIMH [T32MH020065]; [DA037011]; [S10OD018448]</p

    In cervical spondylotic myelopathy spinal cord motion is focally increased at the level of stenosis: A controlled cross-sectional study

    No full text
    Objectives To investigate alterations of spinal cord (SC) motion within cervical spondylotic myelopathy (CSM) across the cervical spinal segments and its relation to cerebrospinal fluid (CSF)-flow, anatomic conditions, and clinical parameters. Setting University Hospital Balgrist, Zurich, Switzerland. Methods Overall, 12 patients suffering from CSM at level C5 and 12 controls underwent cardiac-gated 2D phase-contrast-MRI at level C2 and C5 and standard MRI sequences. Parameters of interest: Velocity measurements of SC and CSF (area under the curve = total displacement (normalization for duration of the heart cycle), total displacement ratio (C5/C2; intraindividual normalization for confounders)), spinal canal diameters, clinical motor- and sensory scores, and performance measures. Results Interrater reliability was excellent for SC motion at both levels and for CSF flow at C2, but not reliable for CSF flow at C5. Within controls, SC motion at C2 positively correlated with SC motion at C5 (p = 0.000); this correlation diminished in patients (p = 0.860). SC total displacement ratio was significantly increased in patients (p = 0.029) and correlated with clinical impairment (p = 0.017). Morphometric measures of the extent of stenosis were not related to SC motion or clinical symptoms. Conclusion The findings revealed physiological interactions of CSF flow and SC motion across the cervical spine in healthy controls while being diminished in CSM patients. Findings of focally increased SC motion at the level of stenosis were related to clinical impairment and might be promising as a diagnostic and prognostic marker in CSM

    Methamphetamine activates reward circuitry in drug naïve human subjects

    No full text
    Amphetamines are highly addictive drugs that have pronounced effects on emotional and cognitive behavior in humans. These effects are mediated through their potent dopaminergic agonistic properties. Dopamine has also been implicated in the modulation of responses of the 'reward circuit' in animal and human studies. In this study we use functional magnetic resonance imaging (fMRI) to identify the brain circuitry involved in the psychostimulant effect of methamphetamine in psychostimulant-naïve human subjects. Seven healthy volunteers were scanned in a 3T MR imaging system. They received single-blind intravenous infusions of methamphetamine (0.15 mg/kg), and rated their experience of 'mind-racing' on a button press throughout the experiment. Data were analyzed with statistical parametric mapping methods. Amphetamine administration activated the medial orbitofrontal cortex, the rostral part of the anterior cingulate cortex, and the ventral striatum. Ratings of 'mind-racing' after methamphetamine infusion correlated with activations in the rostral part of the anterior cingulate cortex and in the ventral striatum. In addition, activations in the medial orbitofrontal cortex were independent of motor and related responses involved in making the ratings. These findings indicate that the first administration of a psychostimulant to human subjects activates classical reward circuitry. Our data also support recent hypotheses suggesting a central role for the orbitofrontal cortex in drug reinforcement and the development of addiction
    corecore