2,753 research outputs found

    Yeast Mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages

    Get PDF
    We have examined the effects of various mannans, glycoproteins, oligosaccharides, monosaccharides, and sugar phosphates on the binding and phagocytosis of yeast cell walls (zymosan) by mouse peritoneal macrophages. A phosphonomannan (PO(4):mannose ratio = 1:8:6) from kloeckera brevis was the most potent inhibitor tested; it inhibited binding and phagocytosis by 50 percent at concentrations of approximately 3-5 μg/ml and 10 μg/ml, respectively. Removal of the phosphate from this mannan by mild acid and alkaline phosphatase treatment did not appreciably reduce its capacity to inhibit zymosan phagocytosis. The mannan from saccharomyces cerevisiae mutant LB301 inhibits phagocytosis by 50 percent at 0.3 mg/ml, and a neutral exocellular glucomannan from pichia pinus inhibited phagocytosis by 50 percent at 1 mg/ml. Cell wall mannans from wild type S. cervisiae X2180, its mnn2 mutant which contains mannan with predominantly 1(arrow)6- linked mannose residues, yeast exocellular mannans and O-phosphonomannans were less efficient inhibitors requiring concentrations of 1-5 mg/ml to achieve 50 percent reduction in phagocytosis. Horseradish peroxidase, which contains high-mannose type oligosaccharides, was also inhibitory. Mannan is a specific inhibitor of zymosan binding and phagocytosis. The binding and ingestion of zymosan but not of IgG- or complement-coated erythrocytes can be obliterated by plating macrophages on substrates coated with poly-L-lysin (PLL)-mannan. Zymosan uptake was completely abolished by trypsin treatment of the macrophages and reduced by 50-60 percent in the presence of 10 mM EGTA. Pretreatment of the macrophages with chloroquine inhibited zymosan binding and ingestion. These results support the proposal that the macrophage mannose/N-acetylglucosamine receptor (P. Stahl, J.S. Rodman, M.J. Miller, and P.H. Schlesinger, 1978, Proc. Natl. Acad. Sci. U.S.A. 75:1399-1403, mediates the phagocytosis of zymosan particles

    Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma

    Get PDF
    Irradiation in conjunction with gene therapy is considered for efficient cancer treatment. Mesenchymal stem cells (MSCs), due to their irradiation-promotable tumor tropism, are ideal delivery vehicles for gene therapy. In this study, we investigated whether treatment with radiation and interleukin (IL)-12-expressing MSCs (MSCs/IL-12) exerts improved antitumor effects on murine metastatic hepatoma. HCa-I and Hepa 1-6 cells were utilized to generate heterotopic murine hepatoma models. Tumor-bearing mice were treated with irradiation or MSCs/IL-12 alone, or a combination. Monocyte chemoattractant protein-1 (MCP-1/CCL2) expression was assessed in irradiated hepatoma tissues to confirm a chemotactic effect. Combination treatment strategies were established and their therapeutic efficacies were evaluated by monitoring tumor growth, metastasis and survival rate. IL-12 expression was assessed and the apoptotic activity and immunological alterations in the tumor microenvironment were examined. MCP-1/CCL2 expression and localization of MSCs/IL-12 increased in the irradiated murine hepatoma cells. The antitumor effects, including suppression of pulmonary metastasis and survival rate improvements, were increased by the combination treatment with irradiation and MSCs/IL-12. IL-12 expression was increased in tumor cells, causing proliferation of cluster of differentiation 8(+) T-lymphocytes and natural killer cells. The apoptotic activity increased, indicating that the cytotoxicity of immune cells was involved in the antitumor effect of the combined treatment. Treatment with irradiation and MSCs/IL-12 showed effectiveness in treating murine metastatic hepatoma. IL-12-induced proliferation of immune cells played an important role in apoptosis of tumor cells. Our results suggest that treatment with irradiation and MSCs/IL-12 may be a useful strategy for enhancing antitumor activity in metastatic hepatoma. What's new? Mesenchymal stem cells (MSCs) are promising gene-delivery vehicles, with the potential to improve antitumor effects when used in combination with existing therapies. In the present study, the combined use of interleukin (IL)-12-expressing MSCs (MSCs/IL-12) and radiation therapy increased antitumor activity in murine metastatic hepatoma, a model that is representative of human metastatic hepatocellular carcinoma (HCC), which affects nearly half of HCC patients. Treatment with MSCs/IL-12 resulted in increased IL-12 expression in tumor cells and immune cell proliferation. Immune cell cytotoxicity, evidenced by increased apoptotic activity, appeared to play a role in MSCs/IL-12 augmentation of antitumor effects.1178Ysciescopu

    Effect of amorphous Si quantum-dot size on 1.54 μm luminescence of Er

    Get PDF
    The role of the size of amorphous silicon quantum dots in the Er luminescence at 1.54 μm was investigated. As the dot size was increased, more Er ions were located near one dot due to its large surface area and more Er ions interacted with other ones. This Er-Er interaction caused a weak photoluminescence intensity, despite the increase in the effective excitation cross section. The critical dot size needed to take advantage of the positive effect on Er luminescence is considered to be about 2.0 nm, below which a small dot is very effective in the efficient luminescence of Er. © 2005 The Electrochemical Society. All rights reserved

    Are autistic traits measured equivalently in individuals with and without an Autism Spectrum Disorder?:An invariance analysis of the Autism Spectrum Quotient Short Form

    Get PDF
    It is common to administer measures of autistic traits to those without autism spectrum disorders (ASDs) with, for example, the aim of understanding autistic personality characteristics in non-autistic individuals. Little research has examined the extent to which measures of autistic traits actually measure the same traits in the same way across those with and without an ASD. We addressed this question using a multi-group confirmatory factor invariance analysis of the Autism Quotient Short Form (AQ-S: Hoekstra et al. in J Autism Dev Disord 41(5):589-596, 2011) across those with (n = 148) and without (n = 168) ASD. Metric variance (equality of factor loadings), but not scalar invariance (equality of thresholds), held suggesting that the AQ-S measures the same latent traits in both groups, but with a bias in the manner in which trait levels are estimated. We, therefore, argue that the AQ-S can be used to investigate possible causes and consequences of autistic traits in both groups separately, but caution is due when combining or comparing levels of autistic traits across the two group

    Tolfenamic Acid Induces Apoptosis and Growth Inhibition in Head and Neck Cancer: Involvement of NAG-1 Expression

    Get PDF
    Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is induced by nonsteroidal anti-inflammatory drugs and possesses proapoptotic and antitumorigenic activities. Although tolfenamic acid (TA) induces apoptosis in head and neck cancer cells, the relationship between NAG-1 and TA has not been determined. This study investigated the induction of apoptosis in head and neck cancer cells treated by TA and the role of NAG-1 expression in this induction. TA reduced head and neck cancer cell viability in a dose-dependent manner and induced apoptosis. The induced apoptosis was coincident with the expression of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. TA significantly inhibited tumor formation as assessed by xenograft models, and this result accompanied the induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression in head and neck squamous cell carcinoma, providing an additional mechanistic explanation for the apoptotic activity of TA

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis

    Regulation of pituitary MT1 melatonin receptor expression by gonadotrophin-releasing hormone (GnRH) and early growth response factor-1 (Egr-1) : in vivo and in vitro studies

    Get PDF
    Copyright: © 2014 Bae et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC; grant BB/F020309/1; http://www.bbsrc.ac.uk/home/home.aspx). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis

    Get PDF
    IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)(2) subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist-knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)(2) on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)(2) model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)(2) inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4(+)CD25(+)Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor-related organ receptor gamma t and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)(2) suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling.1156Ysciescopu
    corecore