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Abstract 

It is common to administer measures of autistic traits to those without autism spectrum disorders 

(ASD) with for example, the aim of understanding autistic personality characteristics in non-autistic 

individuals. Little research has examined the extent to which measures of autistic traits actually 

measure the same traits in the same way across those with and without ASD. We addressed this 

question using a multi-group confirmatory factor invariance analysis of the Autism Quotient Short 

Form (AQ-S: Hoekstra et al. 2011) across those with (n= 148) and without (n=168) ASD. Metric 

variance (equality of factor loadings), but not scalar invariance (equality of thresholds), held 

suggesting that the AQ-S measures the same latent traits in both groups, but with a bias in the manner 

in which trait levels are estimated. We, therefore, argue that the AQ-S can be used to investigate 

possible causes and consequences of autistic traits in both groups separately, but caution is due when 

combining or comparing levels of autistic traits across the two groups.  
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 Formally, autism spectrum disorders (ASDs) - though considered highly heterogeneous - are 

defined with respect to three main characteristics: deficits in social interaction, deficits in 

communication, and a restricted behavioural repertoire (APA, 1994). Intellectual disability, physical 

disorders and sensory symptoms are also commonly associated with ASDs (Matson, Matson & 

Beighly, 2011; Matson & Shoemaker, 2009; Rogers, Hepburn & Wehner, 2003).  

 Increasingly, and for a number of different reasons, researchers are measuring autistic traits in 

those without ASD. One motivation is the argument that such research has the potential to enhance 

the understanding of the determinants and consequences of clinical ASD. Clinical samples can be 

limited in size due to the relatively low frequency of cases and including non-clinical cases can 

increase statistical power by capturing some sub-clinical variability in autistic characteristics (e.g. 

Lundstrӧm et al., 2012; Sung et al., 2005). For example, measures of the  ‘broader autism phenotype’  

or of ‘autistic-like traits’ aim to capture subclinical characteristics or traits which are related to a 

genetic liability to ASDs and may, therefore, assist in identifying the  genetic determinants of ASD 

(Wheelright, Auyeung, Allison & Baron-Cohen, 2010).   

 Autistic traits in those without ASD may also be interesting in their own right. Several studies 

have examined the relation between autistic traits such populations to personality traits and interests 

(Austin, 2005;Baron-Cohen, Wheelright, Skinner, Martin & Clubley, 2001; Kunihira, Senju, Dairoku, 

Wakabayashi & Hasewaga, 2006). One line of research in this paradigm has led to the development of 

the Autism Quotient Questionnaire (AQ) and its variants (e.g. Baron-Cohen, Hoekstra, Knickmeyer & 

Wheelright, 2006; Hoekstra et al. ,2011) which aim to quantify an individual’s position on an 

assumed continuum from ASD to normality (Baron-Cohen et al., 2001).   

  A number of authors have explicitly addressed the hypothesis that individuals with an ASD 

are simply those who score at the extreme end of a normal distribution of traits and abilities related to 

social adaptation and communication (Constantino & Todd, 2003). A distinction is made between 
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clinical autism and autistic like traits (ALTs) in the general population, but the distinction is one of 

degree and not kind. The key difference is that those with a clinical diagnosis of ASD cross a 

threshold beyond which functioning is significantly impaired, whereas those high on ALTs but 

without a clinical diagnosis of ASD remain able to cope with the social interaction demands of society 

(Lundstrӧm  et al., 2012). This hypothesis has been addressed by examining the latent distribution of 

ASD measures across those with and without ASD using taxometric or latent class analysis methods, 

with the evidence at present pointing to ASD as a distinct category from ALTs (Frazier et al., 2010; 

Frazier et al., 2012). Again, this line of research depends on measuring autistic traits in individuals 

without a clinical diagnosis of ASD.  

 Accurately identifying those who fall into the ASD category has also been a prominent 

concern among clinicians and researchers. Studies seeking to develop new psychometric tools for 

identifying individuals with ASD have utilised samples without ASD to evaluate the discriminative 

power of the instruments (e.g. Allison, Auyeung  & Baron-Cohen,  2011; Baron-Cohen et al., 2001). 

Such studies allow the utility of candidate screening tools to be assessed in non-clinical populations, 

where they may act as a ‘red flag’ to assist frontline health professionals in making the decision 

whether to refer an individual for full diagnostic assessment for an ASD (Allison et al., 2011).  

 An important concept when utilising a single inventory across different groups, e.g. 

individuals with and without ASD, is measurement equivalence (Kim & Yoon, 2011). Briefly, tests of 

measurement equivalence assess the hypothesis that the constructs being measured by an inventory 

have the same meaning and measurement properties across the groups. There are several available 

methods for testing the measurement equivalence of an instrument across groups in both confirmatory 

factor analytic (CFA) and item response theory (IRT) frameworks (Kim & Yoon, 2011). When 

several layers of constructs are of interest i.e. the instrument has a higher-order structure, then multi-

group CFA approaches provide an efficient means of gauging measurement invariance at all levels of 

this higher-order structure. This has the advantage of allowing specific loci of a lack of invariance to 

be identified e.g. in first or second-order traits. This is of relevance when assessing invariance of a 

measure of autistic traits because it is thought that these traits form a hierarchy including at least two 
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levels of generality (Hoekstra et al., 2011). Work by Hoekstra et al. (2011) has supported the 

existence of both first-order autistic traits and a second-order ‘Social Behaviour’ construct. 

Measurement equivalence can be assessed at a number of levels. Depending on the purpose of 

measuring autistic traits in individuals without ASD, different levels of measurement equivalence are 

required in order for the conclusions drawn to be valid. The importance of achieving different levels 

of measurement equivalence for different types of analyses has in general been widely discussed (e.g. 

see Borsboom, 2006), however, the implications for ASD research has received less attention. In the 

present study, we outline the levels of equivalence required for the above outlined applications and 

then proceed to test this in a measure of ASD commonly  used in both those with and without ASD. 

Although stronger forms of equivalence may be needed for some applications of ASD 

measures, their most common uses rely only on metric invariance. Metric invariance implies that the 

same latent traits underlie the observed variables in both groups.  Metric invariance is, therefore, 

important if the aim is to make inferences about the causes and consequences of autistic traits from 

autistic traits in the general population to ASDs in the clinical ASD population. In addition, in 

combined analyses of two groups measured by a test that does not exhibit metric invariance across 

these groups, differences in factor loadings can result in the appearance of additional non-substantive 

factors (Meredith & Teresi, 2006). This has the potential to confuse attempts to identify the 

dimensionality of autistic traits and any putative correlates of identified dimensions.  

Scalar invariance may also be desirable in some cases. Scalar invariance is required whenever 

group means are to be compared, otherwise observed mean differences or lack thereof may not 

represent the extent of difference in the latent trait of interest (Borsboom, 2006). For example, group 

differences in scores on an ASD measures have been used as an index of the discriminative power of 

that test, however, without assessing scalar invariance, it is not known how this observed difference 

corresponds to mean differences on the latent traits measured by such test (e.g. Baron-Cohen et al., 

2001). Similarly, it is possible that a test of ASD traits used to screen for or diagnose ASD could 

systematically under- or over- estimate the scores of individuals with ASD relative to individuals 

without ASD if the test is biased, thus reducing its discriminative power. Assessing scalar invariance 
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can evaluate this possibility. Finally, any aggregated factor analyses of scores of those with and 

without ASD in which scalar invariance does not hold can result in additional factors appearing due to 

the differences in thresholds across the groups (Meredith & Teresi, 2006). Again, where the 

dimensionality of ASD traits may be of interest, this could produce misleading results.  

It is important to test empirically, and not simply assume, measurement equivalence across 

groups of people with and without ASD, as there are potentially a number of reasons to think that it 

could be violated. For example, particular items may be less relevant, or have a different meaning or 

interpretation to individuals without, as compared to individuals with, a clinical diagnosis of ASD. In 

addition, ASD is associated with difficulties in self-perception, such that there may be systematic 

under- reporting or possible increased inaccuracies in any self-report measure of autistic traits in 

individuals with ASD (Johnson, Filliter & Murphy, 2009). To our knowledge, no study has previously 

examined measurement invariance of a test of autistic traits across individuals with and without ASD. 

It was, therefore, the aim of the present study to test for invariance of a popular measure of autistic 

traits across individuals with a clinical diagnosis of ASD and control individuals without a diagnosis 

of ASD.  

Methods 

Participants 

ASD Group 

We utilised archival data from case notes on a total of 148 participants with a diagnosis of 

Asperger Syndrome (AS) or High Functioning Autism (HFA), who had previously completed the full 

AQ (Baron-Cohen et al., 2001). HFA was defined as meeting the criteria for Autism but having 

normal intellectual function while AS was defined as meeting the criteria for HFA but with no history 

of language delay (Baron-Cohen & Wheelright, 2004). The sample included 107 males and 41 

females. The age range of the sample was 17 to 62 with a mean of 33.3 (SD=10.7).  For a 

comprehensive description of this sample, including information on data collection and the diagnostic 

process please see Kuenssberg et al. (2012).  

Non-ASD Control Group 
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We recruited a control group of 166 participants from a large university community and from 

social networking sites. Information was collected via an online questionnaire, which included both 

the full AQ (Baron-Cohen et al., 2001) and questions on the demographic characteristics of 

participants. The control sample included 40 male and 126 female participants.  The age of the control 

sample ranged from 17 to 65 with a mean of 30.1 (SD= 11.30).  

Measures 

The AQ-S is a short form of the full AQ (Baron-Cohen et al., 2001) motivated by the benefits 

of a shorter form for use in large scale studies where the full AQ may be too lengthy. Hoekstra et al. 

(2011) arrived at the structure and content of the AQ-S using item selection and validation analyses 

from the full AQ in a sample of individuals with ASD and 2 control populations. The AQ was 

designed to capture the core dimensions of autistic traits in adults with normal intelligence. The AQ-S 

includes 28 of the 50 original AQ items and retains its broad dimensionality. Thus, the items measure 

the domains of: social skills, routine, switching, imagination, and numbers/patterns and a higher-order 

social behaviour factor defined by the first four of these five factors. In ASD and control samples, 

CFA analyses have generally found reasonable fit of this structure for the AQ-S (Kuenssberg, Murray, 

Booth & McKenzie, 2012; Hoekstra et al., 2011).  

In the present study, both our ASD sample and control sample completed the full AQ, but we 

selected only the AQ-S items for analysis. Each item of the AQ-S has four response options from 

‘definitely agree to definitely disagree’. Half of these items are reverse keyed and we rescored these 

items so, for all items, higher scores indicate a higher degree of autistic traits. Although previous 

analyses of the full AQ have tended to use a dichotomous scoring system, we elected to use the full 

four-point scale for our analyses because multi-group CFA with dichotomous items has lower power 

and requires larger sample sizes to detect non-invariance (Kim & Yoon, 2011). 

Statistical Analysis 

Data Screening 

As a check on the appropriateness of the data for our planned statistical analysis, we 

examined data skewness, missingness and communalities.  

Structural and Measurement Invariance Analysis 
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We estimated a series of confirmatory factor analytic (CFA) models in order to first assess the 

fit of the proposed structure of the AQ-S in both the ASD and control groups. We also fit these same 

CFA models to only the males and only the females in the sample. This was to assess the possibility 

that sex differences in autistic traits contributed to any non-invariance observed across the ASD and 

control samples (e.g. see Rivet & Matson, 2011).  

Next, we estimated multi-group CFA models to assess the measurement equivalence.  Multi-

group CFA for the analysis of measurement equivalence can be implemented using either a forwards 

or backwards approach. In the forwards approach, the baseline model is the least constrained and 

cross-group equality constraints are added successively. In the backwards approach, the baseline 

model is fully constrained and mis-specified constraints successively released. Here we employ a 

forward selection method for our analyses. In assessing the equivalence of a measure of autism, the 

forwards multi-group CFA approach is most appropriate because it allows the less strict assumption 

of factorial or metric invariance (equality of factor loadings across groups) to be tested before 

proceeding to a test of scalar invariance (equality of factor loadings and thresholds across groups) and 

the even stronger assumption of strict invariance (equality of factor loadings, thresholds and item 

residual variances). Forward selection has been shown to detect differential item functioning with 

greater accuracy and to be less prone to the substantial type I error produced by backward selection 

(Stark, Chernyshenko & Drasgow, 2006).  

Here we followed the sequence of analyses suggested by Chen, Sousa and West (2005) for 

high-order structures. We first tested for configural equivalence across the ASD and control groups 

for the complete second-order structure. Next, metric equivalence constraints were added to the first, 

then second order factor loadings. Finally, scalar equivalence constraints were added to the first, then 

second order thresholds and intercepts. 

Model Estimation. 

All models were estimated in Mplus 6.11 (Muthen & Muthen, 2010) using weighted least 

squares means and variances estimation (theta parameterization) to account for the categorical 

measurement scale of the questionnaire (Rhemtulla, Brosseau-Laird & Savalei, 2012). 

Model Specification. 
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Single Group CFAs. 

 As a preliminary test of the appropriateness of invariance analysis in our data, we 

individually fit single group CFA models to both the first and second order proposed structure of the 

AQ-S in the ASD and control groups (Table 3). We fit the model suggested by Hoekstra et al. (2011) 

in the original validation study for the AQ-S and depicted in Figure 1. For the purposes of scaling and 

identification, we fixed the variance of the latent factors to be 1.0.   

MG-CFA Configural Invariance. 

 The configural invariance model (Table 4, M1) provides the baseline model for all 

subsequent analyses (see Model Evaluation). Here, factor loadings and item thresholds are free to 

vary across both groups. Factor variances are again fixed to 1.0 across both groups for identification. 

Latent factor means were fixed to zero in both groups, while item residuals were fixed to 1.0 in both 

groups. 

MG-CFA Metric Invariance. 

 Metric invariance was assessed in both the 1
st
-order factors (Table 4, M2) and 2

nd
-order 

factor (Table 4, M3), by constraining the loadings to equivalence across groups.  

MG-CFA Item Threshold Invariance. 

 Next, equivalence constraints were placed on the thresholds of the indicator items across 

groups (Table 4, M4). The AQ-S has a four point response scale resulting in three thresholds per item. 

In this model, the factor means of the first order factors were freely estimated in the second group 

(here the control group), but remained fixed at 0 and 1.0 respectively in the reference group (here the 

ASD group).  

Model Evaluation. 

Model fit was evaluated using comparative fit index (CFI), Tucker-Lewis Index (TLI), Root 

Mean Square Error of Approximation (RMSEA) and Weighted Root Mean Square Residual 

(WRMSR). We judged fit to be good when CFI and TLI values were >0.90 to 0.95, WRMSR values 

were <0.90, and RMSEA values were <0.08 (Hu and Bentler, 1999; Schermelleh-Engel, Moosbrugger 

& Müller, 2003; Yu, 2002). Though it is often desirable to compare models, especially non-nested 

models, based on the Akaike and Bayesian Information Criteria (AIC, REF; BIC, REF), these are not 



10 

 

available in the current analyses as we utilise item level estimation technique (WLSMV), which does 

not provide the maximization of the log-likelihood required to calculate AIC and BIC. 

In testing measurement invariance, the assumptions of invariance are assumed to hold if the 

additional constraints placed on models yield negligible changes in model fit. There is no uniformly 

agreed upon criteria for judging change in model fit within invariance models. Here we rely on the 

studies of Vandenberg & Lance (2000) and Chen (2007) and suggest drop in fit of -0.010 for TLI, -

0.005 for the CFI, alongside a change in RMSEA of 0.010, to be indicative of substantive decline in 

model fit, and thus, that the assumptions of the invariance constraints are violated.  

 Results 

Descriptive Statistics 

 Substantial skew and kurtosis were evident in both the ASD (±2.43 and ±7.22 respectively) 

and control (±1.27 and ±1.24 respectively) groups. However, WSLMV is robust to non-normality, 

and as such, the levels of skew and kurtosis were not deemed problematic. Item communalities in 

both the ASD (Range= 0.24 to 0.60, mean=0.40) and control (Range=0.21 to 0.75, mean=0.44) 

suggested the data were suitable for factor analysis.  

In both samples, the percentage of missing data was low (ASD=0.27%; control: 0.84%). Less 

than 5% missingness is generally considered unproblematic (Tabachnick & Fidell, 2007). 

Subscale Means 

 Subscale means and standard deviations first split by ASD versus control and then by males 

and females are provided in Table 1.  For the social skills, routine, and switching factors means were 

higher in ASD relative to control and in males relative to females. For the imagination and 

numbers/patterns subscale, however, there was essentially no observed mean difference between ASD 

and control and between males and females (see Discussion).  

(Insert Table 1 about here) 

 Table 2 reports the correlations of the five subscales scores of the AQ-S. Given the same sizes 

in the current study, differences in Pearson’s correlations of approximately .20 would be indicative of 

a significant difference. Consideration of the estimates in Table 2 suggests that although correlations 

between subscales show some variation across groups, these variations do not reach a threshold for 
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being statistically significantly different. However, it is important to note that this may be a reflection 

of the size of the current samples.   

(Insert Table 2 about here) 

Single Group CFAs 

Fit indexes for the single group CFA analyses are provided in Table 3. Model fit for the first 

and second order models in the ASD and control were acceptable based on the lower limits of model 

fit, and in line with model fits reported in previous studies. Fit in the ASD group was slightly better 

than that of the control group. The inclusion of the 2
nd

-Order factor in both the ASD and control 

groups resulted in a small decrease in model fit at the third decimal place in the CFI, TLI and 

RMSEA. However, given the magnitude of the factor correlations (ranging from r=.46 to .77; see also 

the sum score correlations in Table 1), which indicate the plausibility of a 2
nd

-order factor, and past 

research on both the AQ and AQ-S suggesting its inclusion, the small differences in fit were not 

deemed substantive enough to support rejecting the 2
nd

-order model.  Modification indices (MI) and 

expected parameter changes (EPC) suggested the presence of some cross-loadings and correlated 

residuals in both samples and pointed to item complexity as an important source of mis-fit in the 

model. In the ASD group, the largest MIs and EPCs were associated with cross loadings of item 41 on 

Social Behaviour (MI=16.13, EPC=0.26) and item 2 (MI=15.71, EPC=0.43) on Numbers and 

Patterns. In the control group the largest MIs and EPCs were again associated with cross loadings of 

item 41 on Social Behaviour (MI=20.65, EPC=0.36) as well as item 46 on Social Skills (MI=16.80, 

EPC=0.72).  Given that fit was well within acceptable levels and because we wished to avoid 

capitalising on chance (e.g. McDonald & Ho, 2002) we did not make any post hoc modifications to 

our models based on these MIs and EPCs.  

(Insert Table 3 about here) 

In the male, female and whole sample groups, however, the magnitude of the fit statistics for 

the first-order models was poor (and we, therefore, did not attempt to fit a second-order model). A 

possible explanation for this was that differences between the ASD and control groups (i.e. non-

invariance) meant that whenever a group contained both ASD and control individuals, there was a 

break down in factor structure (e.g. see Meredith & Teresi, 2006). We tested this possibility by fitting 
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single group CFAs to two samples to which participants were randomly assigned and which were, 

therefore, heterogeneous with respect to both sex and ASD vs. control diagnosis. Table 4 provides 

details of the sex and ASD status of the random groups as compared to the whole sample. In addition, 

we fit single group CFAs to the sample of females without ASD and the sample of males with ASD in 

order to test the model on samples which were homogeneous with respect to both sex and ASD 

diagnosis. The purpose of these additional analyses was to help us to identify the source of mis-fit in 

the sex homogeneous, ASD heterogeneous samples.  

(Insert Table 4 about here) 

The model fit well in the male group excluding those without an ASD diagnosis and in the 

female group excluding those with an ASD diagnosis. In the groups mixed with respect to sex and 

ASD diagnosis, fit was poor and similar to that in the single sex groups which were heterogeneous 

with respect to ASD diagnosis. This pointed to differences between individuals with ASD and 

controls as the source of mis-fit in the mixed groups and suggested that we would observe non-

invariance between ASD and control groups in subsequent stages of analysis.  

Multi-group CFA Measurement Invariance 

 Next, we sequentially tested for measurement invariance across ASD and control groups. The 

multi-group configurally invariant model (Table 5, M1) showed reasonable fit to the data and 

provided the initial baseline model for model fit comparisons. The assumption of factor loading or 

metric invariance was supported in the first-order model (Table 5, M2). Additional constraints on the 

second order factor loadings (Table 5, M3; see also Figure 1) yielded a difference in CFI of -0.011, 

above the suggested difference value of -0.005. However, considered alongside the changes in TLI 

and RMSEA, invariance of the second order factor loadings was considered to hold. Therefore, the 

assumptions of factor loading, or metric invariance, were deemed to be reasonable for the AQ-S in 

both the first and second order factors across ASD and control groups. 

We then proceeded to assess scalar invariance. The difference in model fit statistics between 

models M3 and M4 suggested that the assumption of scalar invariance of the indicator variables did 

not hold (∆CFI=-0.18; ∆TLI=-0.16; ∆RMSEA=0.032). We investigated the source of misfit based on 

the modification indices. However, after twelve individual item thresholds had been released, model 
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fit was still poor, and so model modification was terminated. All thresholds for items 3, 4, 23 and 46 

were released suggesting these items performed very differently across groups. Considering the 

response counts for these items confirmed this. For example, for item 4 (I frequently get so strongly 

absorbed in one thing that I lose sight of other things), the distribution of responses across the four 

points of the response scale were 2, 2, 30 and 113 in the ASD group, and 60, 66, 30, 10 in the control 

group.  

 As the focus of the current study was not on mean differences in latent factor scores, and the 

fact that we were unable to achieve first-order scalar invariance, we did not continue to fix the 

intercepts of the second order factors. 

Discussion 

 In the present study, we found that the higher-order structure of the AQ-S suggested by 

previous studies exhibited configural and metric invariance across an ASD and control group in a 

series of multi-group CFA models. We were not, however, able to achieve scalar invariance even in 

the first-order model. After releasing equality constraints on 12 item thresholds, the model fit 

remained outside of the bounds that would indicate acceptable fit.  

Implications 

 The importance of assessing measurement equivalence of a measure used across two groups 

is widely acknowledged, however, the present study was, to our knowledge, the first to examine the 

measurement equivalence of a questionnaire used across both ASD and control groups.  This is 

important because measures of autistic traits are frequently administered to both groups, with varying 

research goals. 

 Which level of invariance is required and how problematic violations of invariance are 

depend on the specific purpose of using the measure in the two groups (Borsboom, 2006). Our finding 

that the measure exhibited invariance at the metric level suggests that the manifest variables of the 

AQ-S measure the same latent traits across ASD and control group.  From a substantive point of view, 

this is interesting because it implies that the same constructs can describe autistic traits in ASD and 
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control groups. This does not imply that these traits are necessarily continuously distributed across 

these groups (e.g. see Frazier et al., 2010), but it does suggest that even if the ASD and non-ASD 

represent distinct latent categories, then the two categories may still be definable in terms of the same 

latent autistic traits. To formally test this hypothesis, it would be interesting to conduct latent class or 

taxometric analyses including tests of invariance across categories with the AQ-S, however, we did 

not have the requisite sample size in the present study.  

 We did not observe complete scalar invariance, even in our first-order model. A lack of scalar 

invariance suggests test bias and means that equal observed scores on the AQ-S does not necessarily 

imply equal levels of autistic traits in an individual drawn from an ASD versus a non-ASD 

population. This may makes sense in the context of the ALT-ASD continuity hypothesis which 

proposes that those who score high on ALTs may not receive a diagnosis of ASD if they are able to 

compensate and achieve adaptive levels of social functioning in spite of being predisposed to ASD. 

This could result in non-diagnosed individuals having higher levels of autistic traits for the same AQ-

S score as an individual with a clinical diagnosis of ASD. It also is consistent with a systematic under-

reporting of symptoms in individuals with ASD due to deficits in self-perception (Johnson et al., 

2009). This latter hypothesis would predict that scalar invariance could be observed if data were 

obtained from informant raters rather than via self-report and would be interesting to test in future 

research.  

Strengths and Limitations 

In the present study we examined the measurement equivalence of the AQ-S because it is a 

popular measure of autistic traits used frequently in individuals both with and without ASD. 

Historically, defining the core features of ASD in light of its complexity and heterogeneity has proven 

a challenge (Rajendran & Mitchell, 2007). The AQ and its derivative, the AQ-S, represented an 

attempt to tackle this issue and distil ASD into its core trait dimensions using psychometric tools of 

analysis. The AQ has undergone extensive psychometric evaluation and the majority of studies 

support its psychometric utility. Wheelright et al. (2010) note that it shows consistent results over 
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time, produces highly heritable scores, predicts clinical diagnosis of ASD and correlates with brain 

function, genetic polymorphisms in ASD candidate genes, social attention and prenatal testosterone 

levels. The more recently developed AQ-S yielded scores that correlated strongly with those of the 

full AQ in both a control samples and an ASD sample, suggesting minimal loss of information 

moving to a briefer inventory (Hoekstra et al., 2011). They also demonstrated good sensitivity and 

specificity in classifying individuals as having or not having a clinical diagnosis of ASD (ibid).  

One issue, however, is that the AQ was designed for the express purpose of measuring autistic 

traits in adults with normal intellectual functioning (Baron-Cohen et al., 2001). For example, 

behaviours that are less common in high functioning ASD than low functioning ASD such as 

repetitive sensori-motor behaviours are not represented in the AQ-S. In fact, estimates suggest that 

approximately 50-70% of individuals with ASD have an intellectual disability (Matson & Shoemaker. 

2009). The AQ-S is, therefore, not applicable to a large proportion of individuals with ASD and also 

may be less likely to show invariance across a low functioning ASD group and control group. 

Nevertheless, this does not undermine the validity of the current results with respect to individuals of 

normal intellectual functioning.   

 It is also important to consider the effect of our particular sample on the generalisability of 

results. We used a clinical sample of individuals with an ASD diagnosis, as well as a sample drawn 

from the general population. The relative rarity of clinical disorders can limit the sample sizes 

attainable for studies on clinical disorders. In the present study our sample size was small for an 

application of multi-group CFA, however, simulation studies have suggested that a lack of invariance 

can be detected for group sizes of down to 100 if the effect size is not small and once the sample size 

reaches 200 per group, a lack of invariance can generally be detected well, irrespective of the effect 

size (Kim & Yoon, 2011). Our group sample sizes of 148 for the ASD group and 166 for the control 

group fell between these two values, suggesting that our study was sufficiently powered to detect a 

lack of invariance unless it was of only small effect size. Thus, while we can rule out moderate to 

large differences in the factor structure of the AQ-S across individuals with and without ASD in the 

current sample, replication of these findings and larger samples may be required to formally test for 

small differences in factor loadings across groups. We were also more likely to observe non-
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invariance by using a general population sample as our comparison control group. Had we used a 

sample comprising, for example, relatives of individuals with ASD, who would have likely had more 

similar levels of autistic traits to a clinical ASD sample we may not have observed such a large 

decrease in fit when adding scalar constraints across the ASD and control group. 

Another factor which could affect the generalisability of the present results is the differing sex 

ratios of the control and ASD group. ASD is more prevalent in males than females, with estimates 

suggesting an average sex ratio of 4.3:1 in the disorder and with an even higher male: female ratio in 

samples of individuals with higher IQs, such as that utilised in the present study (Rivet & Matson, 

2011). Thus, in the present study the sex ratios favoured males in the ASD group and females in the 

control group. It is possible, given that there has been much discussion of possible sex differences in 

ASD, that our failure to find threshold invariance partly reflects these possible sex differences (Rivet 

& Matson, 2011). The results from our single group CFAs using both sex /ASD homogenous versus 

heterogeneous samples suggested that the source of invariance had its origin in differences between 

ASD and control individuals rather than in sex differences. However, although these models are 

suggestive, they did not provide a formal test of differences across ASD status and sex. Such tests 

would be possible by applying a four group invariance analysis, with homogenous sex/ASD groups. 

Again, the current sample was not large enough for such an analysis. Sex differences in ASD are, 

nevertheless, not yet well understood and further research would be required to examine possible sex 

differences in the constructs measured by the AQ-S.  
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Figure Caption 

 

Figure 1: Structural diagram and standardized parameter estimates for the second order metrically 

invariant model (M3, Table 5). i = item. Item numbers correspond to the numbers from the 

original AQ. Parameter estimates are presented for both the ASD group (on the left hand side of 

the forward slash) and the non-ASD group (right hand side of the forward slash).
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Table 1: 

AQ-S Subscale Means and Standard Deviations for Sample Sub-groups. 

    Male   Female  

 ASD Control All ASD Control  All ASD Control 

Social Skills 3.25(.63) 2.70(.69) 3.12(.66) 3.24(.63) 2.78(.62) 2.83(.74) 3.29(.62) 2.67(.71) 

Routine 3.36(.57) 2.55(.65) 3.15(.68) 3.34(.57) 2.63(.67) 2.75(.72) 3.41(.52) 2.53(.65) 

Switching 3.42(.53) 2.58(.55) 3.13(.69) 3.39(.54) 2.44(.58) 2.83(.64) 3.48(.50) 2.65(.53) 

Imagination 2.93(.63) 3.02(.45) 2.91(.59) 2.91(.63) 2.95(.45) 3.03(.50) 3.00(.64) 3.04(.45) 

Numbers and Patterns 2.75(.76) 2.73(.70) 2.71(.73) 2.74(.75) 2.63(.68) 2.78(.73) 2.78(.79) 2.77(.71) 

 

Note: Means and standard deviations are based on complete cases. 
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Table 2: 

Subscale Inter-correlations for ASD, Control, Males and Females. 

ASD\Control 1 2 3 4 5 

1. Social Skills - .56
**

 .30
**

 .41
**

 .16 

2. Routine .43
**

 - .31
**

 .28
**

 .13 

3. Switching .42
**

 .26
**

 - .29
**

 -.04 

4. Imagination .51
**

 .37
**

 .41
**

 - .10 

5. Numbers and Patterns .09 .30
**

 .14 .16 - 

Males\Females      

1. Social Skills - .61
**

 .48
**

 .39
**

 .10 

2. Routine .54
**

 - .51
**

 .24
**

 .19
*
 

3. Switching .49
**

 .49
**

 - .30
**

 .02 

4. Imagination .46
**

 .29
**

 .25
**

 - .10 

5. Numbers and Patterns .17
*
 .22

**
 .08 .16 - 

  

*
p<.05, 

**
p<.01 
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Table 3: Model Fit Statistics for Single Group Models. 

Note: Chi-square from WLSMV estimation is means- and variances- adjusted using the full weight matrix. The difference in the adjusted chi-square is not 

interpretable based on a standard chi-square distribution (Muthen & Muthen, 2010).

Model Adjusted χ
2 

df Signif. CFI TLI RMSEA WRMR 

Single ASD Status Groups        

1
st
-Order Model – ASD Group 448.239 340 p<.001 .920 .912 .046 0.939 

2
nd

-Order Model – ASD Group 464.257 345 p<.001 .912 .904 .048 0.976 

1
st
-Order Model – Control Group 545.769 340 p<.001 .902 .891 .060 1.108 

2
nd

-Order Model – Control Group 565.154 345 p<.001 .895 .885 .062 1.149 

        

Single Sex Groups        

1
st
-Order Model – Males (n=147) 693.808 340 p<.001 .789 .766 .084 1.307 

1
st
-Order Model – Females (n=167) 804.252 340 p<.001 .809 .788 .090 1.469 

        

Single Sex, Single ASD Status Groups        

1
st
-Order Model - Male with ASD (n=107) 426.199 340 p<.001 .913 .903 .049 0.908 

1
st
-Order Model Female without ASD (n=126) 493.769 340 p<.001 .913 .903 .060 1.042 

        

Random Groups Mixed Sex and ASD Status        

1
st
-Order Model – Random Group 1 (n=151) 916.713 340 p<.001 .711 .679 .106 1.586 

1
st
-Order Model – Random Group 2 (n=163) 781.930 340 p<.001 .822 .803 .089 1.408 

        

Full Sample        

1
st
-Order Model (n=314) 1490.782 340 p<.001 .759 .732 .104 1.948 
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Table 4: 

Cross Tabulation of Sex and ASD Status in the Whole and Random Samples 

Whole    

 Male Female Total 

ASD 107 41 148 

% within ASD 72.3% 27.7%  

% within Sex 72.8% 24.6%  

Control 40 126 166 

% within ASD 24.1% 75.9%  

% within Sex 27.2% 75.4%  

Total 147 167 314 

    

Group 1    

 Male Female Total 

ASD 58 17 75 

% within ASD 77.3% 22.7%  

% within Sex 78.4% 22.1%  

Control 16 60 76 

% within ASD 21.1% 78.9%  

% within Sex 21.6% 77.9%  

Total 74 77 151 

    

Group 2    

 Male Female Total 

ASD 49 23 72 

% within ASD 68.1% 31.9%  

% within Sex 67.1% 25.6%  

Control 24 67 91 

% within ASD 26.4% 73.6%  

% within Sex 32.9% 74.4%  

Total 73 90 163 
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Table 5: 

Model Fit Statistics for Multi-Group Invariance Models. 

 

Note: Chi-square from WLSMV estimation is means- and variances- adjusted using the full weight matrix. The difference in the adjusted chi-square is not 

interpretable based on a standard chi-square distribution. The corrected chi-square difference estimates were calculated using the DIFTEST option in Mplus 

(Muthen & Muthen, 2010). 

 

Model Adjusted χ
2
 df Signif. CFI TLI RMSEA WRMR 

M1: Configural Invariance 1029.686 690 p<.001 .901 .892 .056 1.508 

M2: 1
st
-Order Factor Loadings 1031.686 713 p<.001 .907 .901 .054 1.594 

Difference M2 versus M1 37.888 23 p=.0262 .006 .009 -.002 .086 

M3: 2
nd

-Order Factor Loadings 1071.350 716 p<.001 .895 .889 .057 1.671 

Difference M3 versus M2 23.887 3 p<.001 -.012 -.012 .003 .077 

M4: 1
st
-Order Thresholds 1776.643 795 p<.001 .715 .729 .089 2.374 

Difference M4 versus M3 1246.168 79 p<.001 -.180 -.160 .032 0.703 


