2,403 research outputs found

    Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen

    No full text
    Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct. Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions

    Tirisporella gen. nov., an ascomycete from the mangrove palm Nypa fruticans

    Get PDF
    Tirisporella beccariana comb.nov. is redescribed from decomposing leaf petiole (or rachis) bases of Nypa fruticans recently collected in Malaysia and the Philippiines. The superficial ascomata bear bitunicate asci with (3-)5(-7)-septate ascospores that are brown and verrucose, except for the prominent hyaline basal cell, and furnished with a distinctive apical appendage that arises from the spore wall. Te ultrastructure of the fungus is contrasted with that of species of Corollospora and Corallicola, with particular reference to the mode of ascospore appendage formation. The species was originally described from a Sarawak collection as Sphaeria becariana and later transferred to Melanomma and given the new name Melanomma cesatianum. Gibberidea nipae is a synonym. The recent collections were compared with type specimens. The fungus is not properly placed in Melanomma or Gibberidea or other known genera and a new genus Tiriporella is described.published_or_final_versio

    Facilitating personal development for public involvement in health-care education and research: a co-produced pilot study in one UK higher education institute

    Get PDF
    BACKGROUND: Public involvement in the education of students enrolled on higher education programmes has gained impetus. For students enrolled on professional health-care programmes and health-related modules in the UK, there is also a requirement by professional bodies to include "service user" involvement in preparation for entry to a professional health-care register and continuing professional development. Actively involving patients and members of the public in research is also a requirement by many research funders. In this article, the term Patient and Public Involvement (PPI) will be used throughout to include lay members, volunteers, user and carers. OBJECTIVES: A unique pilot study was introduced across a health faculty to integrate PPI in a deliberate way. It aimed to provide an educational, focused programme of events that was meaningful to develop and inform peoples' knowledge, skills and confidence for their involvement in the health faculty. DESIGN: PPI members volunteered to sit on a steering group to determine the educational journey; the outcomes of three focus groups with PPI members (N = 32) and academics informed the programme content which included a range of workshops covering the exploration of public roles and barriers to involvement, introduction to research and interviewing skills. RESULTS: The workshops were well attended, and outcomes indicated the importance of co-production when designing, delivering and evaluating programmes. DISCUSSION: Co-production underpinned this pilot study, resulting in a programme which was meaningfully received by public contributors. RECOMMENDATIONS: Co-production was seen as integral to this research to ensure that outcomes were indeed "fit for purpose"

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Stability of white matter changes related to Huntington's disease in the presence of imaging noise: a DTI study.

    Get PDF
    Movement artifacts and other sources of noise are a matter of concern particularly in the neuroimaging research of movement disorders such as Huntington's disease (HD). Using diffusion weighted imaging (DWI) and fractional anisotropy (FA) as a compound marker of white matter integrity, we investigated the effect of movement on HD specific changes in magnetic resonance imaging (MRI) data and how post hoc compensation for it affects the MRI results. To this end, we studied by 3T MRI: 18 early affected, 22 premanifest gene-positive subjects, 23 healthy controls (50 slices of 2.3 mm thickness per volume, 64 diffusion-weighted directions (b = 1000 s/mm2), 8 minimal diffusion-weighting (b = 100 s/mm2)); and by 1.5 T imaging: 29 premanifest HD, 30 controls (40 axial slices of 2.3 mm thickness per volume, 61 diffusion-weighted directions (b = 1000 s/mm2), minimal diffusion-weighting (b = 100 s/mm2)). An outlier based method was developed to identify movement and other sources of noise by comparing the index DWI direction against a weighted average computed from all other directions of the same subject. No significant differences were observed when separately comparing each group of patients with and without removal of DWI volumes that contained artifacts. In line with previous DWI-based studies, decreased FA in the corpus callosum and increased FA around the basal ganglia were observed when premanifest mutation carriers and early affected patients were compared with healthy controls. These findings demonstrate the robustness of the FA value in the presence of movement and thus encourage multi-center imaging studies in HD

    Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data

    Get PDF
    Liquid water is generally only meta-stable on Mars today; it quickly freezes, evaporates or boils in the cold, dry, thin atmosphere (surface pressure is about 200 times lower than on Earth). Nevertheless, there is morphological evidence that surface water was extensive in more ancient times, including the Noachian Epoch (~4.1 Ga to ~3.7 Ga bp), when large lakes existed and river-like channel networks were incised, and early in the Hesperian Epoch (~3.7 Ga to ~2.9 Ga bp), when megafloods carved enormous channels and smaller fluvial networks developed in association with crater-lakes. However, by the Amazonian Epoch (~3.0 Ga to present), most surface morphogenesis associated with liquid water had ceased, with long periods of water sequestration as ice in the near-surface and polar regions. However, inferences from observations using imaging data with sub-metre pixel sizes indicate that periglacial landscapes, involving morphogenesis associated with ground-ice and/or surface-ice thaw and liquid flows, has been active within the last few million years. In this paper, three such landform assemblages are described: a high-latitude assemblage comprising features interpreted to be sorted clastic stripes, circles and polygons, non-sorted polygonally patterned ground, fluvial gullies, and solifluction lobes; a mid-latitude assemblage comprising gullies, patterned ground, debris-covered glaciers and hillslope stripes; and an equatorial assemblage of linked basins, patterned ground, possible pingos, and channel-and-scarp features interpreted to be retrogressive thaw-slumps. Hypotheses to explain these observations are explored, including recent climate change, and hydrated minerals in the regolith ‘thawing’ to form liquid brines at very low temperatures. The use of terrestrial analogue field sites is also discussed

    Vertical Binocular Disparity is Encoded Implicitly within a Model Neuronal Population Tuned to Horizontal Disparity and Orientation

    Get PDF
    Primary visual cortex is often viewed as a “cyclopean retina”, performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D) disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations

    Aluminium oxide barrier films on polymeric web and their conversion for packaging applications

    Get PDF
    In recent years, inorganic transparent barrier layers such as aluminium oxide or silicon oxide deposited onto polymer films have emerged as an attractive alternative to polymer based transparent barrier layers for flexible food packaging materials. For this application, barrier properties against water vapour and oxygen are critical. Aluminium oxide coatings can provide good barrier levels at thicknesses in the nanometre range, compared to several micrometres for polymer-based barrier layers. These ceramic barrier coatings are now being produced on a large scale using industrial high speed vacuum deposition techniques, here, reactive evaporation on a 'boat-type' roll-to-roll metalliser. For the thin barrier layer to be useful in its final packaging application, it needs to be protected. This can be either via lamination or via an additional topcoat. This study reports on acrylate topcoats, but also undercoats, on aluminium oxide coated biaxially oriented polypropylene films. The effect of the acrylate layer on barrier levels and surface topography and roughness was investigated. The acrylate was found to smooth the substrate surface and improve barrier properties. Furthermore, the activation energy for water vapour and oxygen permeation was determined in order to investigate barrier mechanisms. The oxide coated film was, additionally, converted via adhesive lamination, which also provided improvement in barrier levels. © 2013 Elsevier B.V. All rights reserved

    Anyons in a weakly interacting system

    Full text link
    We describe a theoretical proposal for a system whose excitations are anyons with the exchange phase pi/4 and charge -e/2, but, remarkably, can be built by filling a set of single-particle states of essentially noninteracting electrons. The system consists of an artificially structured type-II superconducting film adjacent to a 2D electron gas in the integer quantum Hall regime with unit filling fraction. The proposal rests on the observation that a vacancy in an otherwise periodic vortex lattice in the superconductor creates a bound state in the 2DEG with total charge -e/2. A composite of this fractionally charged hole and the missing flux due to the vacancy behaves as an anyon. The proposed setup allows for manipulation of these anyons and could prove useful in various schemes for fault-tolerant topological quantum computation.Comment: 7 pages with 3 figures. For related work and info visit http://www.physics.ubc.ca/~fran

    Growth/differentiation factor 15 causes TGFβ activated kinase 1 dependent muscle atrophy in pulmonary arterial hypertension

    Get PDF
    Introduction Skeletal muscle dysfunction is a clinically important complication of pulmonary arterial hypertension (PAH). Growth/differentiation factor 15 (GDF-15), a prognostic marker in PAH, has been associated with muscle loss in other conditions. We aimed to define the associations of GDF-15 and muscle wasting in PAH, to assess its utility as a biomarker of muscle loss and to investigate its downstream signalling pathway as a therapeutic target. Methods GDF-15 levels and measures of muscle size and strength were analysed in the monocrotaline (MCT) rat, Sugen/hypoxia mouse and in 30 patients with PAH. In C2C12 myotubes the downstream targets of GDF-15 were identified. The pathway elucidated was then antagonised in vivo. Results Circulating GDF-15 levels correlated with tibialis anterior (TA) muscle fibre diameter in the MCT rat (Pearson r=−0.61, p=0.003). In patients with PAH, plasma GDF-15 levels of <564 pg/L predicted those with preserved muscle strength with a sensitivity and specificity of ≥80%. In vitro GDF-15 stimulated an increase in phosphorylation of TGFβ-activated kinase 1 (TAK1). Antagonising TAK1, with 5(Z)-7-oxozeaenol, in vitro and in vivo led to an increase in fibre diameter and a reduction in mRNA expression of atrogin-1 in both C2C12 cells and in the TA of animals who continued to grow. Circulating GDF-15 levels were also reduced in those animals which responded to treatment. Conclusions Circulating GDF-15 is a biomarker of muscle loss in PAH that is responsive to treatment. TAK1 inhibition shows promise as a method by which muscle atrophy may be directly prevented in PAH
    corecore