26 research outputs found

    Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection

    Get PDF
    Background: Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. Methods: This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. Results and conclusion: The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed

    Very Important Pool (VIP) genes – an application for microarray-based molecular signatures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in DNA microarray technology portend that molecular signatures from which microarray will eventually be used in clinical environments and personalized medicine. Derivation of biomarkers is a large step beyond hypothesis generation and imposes considerably more stringency for accuracy in identifying informative gene subsets to differentiate phenotypes. The inherent nature of microarray data, with fewer samples and replicates compared to the large number of genes, requires identifying informative genes prior to classifier construction. However, improving the ability to identify differentiating genes remains a challenge in bioinformatics.</p> <p>Results</p> <p>A new hybrid gene selection approach was investigated and tested with nine publicly available microarray datasets. The new method identifies a Very Important Pool (VIP) of genes from the broad patterns of gene expression data. The method uses a bagging sampling principle, where the re-sampled arrays are used to identify the most informative genes. Frequency of selection is used in a repetitive process to identify the VIP genes. The putative informative genes are selected using two methods, t-statistic and discriminatory analysis. In the t-statistic, the informative genes are identified based on p-values. In the discriminatory analysis, disjoint Principal Component Analyses (PCAs) are conducted for each class of samples, and genes with high discrimination power (DP) are identified. The VIP gene selection approach was compared with the p-value ranking approach. The genes identified by the VIP method but not by the p-value ranking approach are also related to the disease investigated. More importantly, these genes are part of the pathways derived from the common genes shared by both the VIP and p-ranking methods. Moreover, the binary classifiers built from these genes are statistically equivalent to those built from the top 50 p-value ranked genes in distinguishing different types of samples.</p> <p>Conclusion</p> <p>The VIP gene selection approach could identify additional subsets of informative genes that would not always be selected by the p-value ranking method. These genes are likely to be additional true positives since they are a part of pathways identified by the p-value ranking method and expected to be related to the relevant biology. Therefore, these additional genes derived from the VIP method potentially provide valuable biological insights.</p

    A Machine Learning Approach for Identifying Novel Cell Type–Specific Transcriptional Regulators of Myogenesis

    Get PDF
    Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of both their unique and their shared sequence features. To address this problem, we combined phylogenetic profiling with a DNA–based enhancer sequence classifier that analyzes the TF binding sites (TFBSs) governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species. Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs. Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs. Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of cognate TFs that coordinate cell type–specific developmental gene expression patterns

    A Tutorial on EEG Signal Processing Techniques for Mental State Recognition in Brain-Computer Interfaces

    Get PDF
    International audienceThis chapter presents an introductory overview and a tutorial of signal processing techniques that can be used to recognize mental states from electroencephalographic (EEG) signals in Brain-Computer Interfaces. More particularly, this chapter presents how to extract relevant and robust spectral, spatial and temporal information from noisy EEG signals (e.g., Band Power features, spatial filters such as Common Spatial Patterns or xDAWN, etc.), as well as a few classification algorithms (e.g., Linear Discriminant Analysis) used to classify this information into a class of mental state. It also briefly touches on alternative, but currently less used approaches. The overall objective of this chapter is to provide the reader with practical knowledge about how to analyse EEG signals as well as to stress the key points to understand when performing such an analysis

    A study of identification performance of facial regions from CCTV images

    Get PDF
    This paper focuses on automatic face identification for forensic applications. Forensic examiners compare different parts of the face image obtained from a closed-circuit television (CCTV) image with a database of mug shots or good quality image(s) taken from the suspect. In this work we study and compare the discriminative capabilities of different facial regions (also referred to as facial features) such as eye, eyebrow, mouth, etc. It is useful because it can statistically support the current practice of forensic facial comparison. It is also of interest to biometrics as a more robust general-purpose face recognition system can be built by fusing the similarity scores obtained from the comparison of different individual parts of the face. For experiments with automatic systems, we simulate a very challenging recognition scenario by using a database of 130 subjects each having only one gallery image. Gallery images are frontal mug shots while probe set consist of low quality CCTV camera images. Face images in gallery and probe sets are first segmented using eye locations and recognition experiments are performed for the different face regions considered. We also study and evaluate an improved recognition approach based on AdaBoost algorithm with Linear Discriminant Analysis (LDA) as a week learner and compare its performance with the baseline Eigenface method for automatic facial feature recognition
    corecore