380 research outputs found

    Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.

    Get PDF
    INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients

    Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.

    Get PDF
    INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients

    The role of anti-aquaporin 4 antibody in the conversion of acute brainstem syndrome to neuromyelitis optica

    Get PDF
    Background: Acute brainstem syndrome (ABS) may herald multiple sclerosis (MS), neuromyelitis optica (NMO), or occur as an isolated syndrome. The aquaporin 4 (AQP4)-specific serum autoantibody, NMO-IgG, is a biomarker for NMO. However, the role of anti-AQP4 antibody in the conversion of ABS to NMO is unclear. Methods: Thirty-one patients with first-event ABS were divided into two groups according to the presence of anti-AQP4 antibodies, their clinical features and outcomes were retrospectively analyzed. Results: Fourteen of 31 patients (45.16 %) were seropositive for NMO-IgG. The 71.43 % of anti-AQP4 (+) ABS patients converted to NMO, while only 11.76 % of anti-AQP4 (-) ABS patients progressed to NMO. Anti-AQP4 (+) ABS patients demonstrated a higher IgG index (0.68 ± 0.43 vs 0.42 ± 0.13, p < 0.01) and Kurtzke Expanded Disability Status Scale (4.64 ± 0.93 vs 2.56 ± 0.81, p < 0.01) than anti-AQP4 (-) ABS patients. Area postrema clinical brainstem symptoms occurred more frequently in anti-AQP4 (+) ABS patients than those in anti-AQP4 (-) ABS patients (71.43 % vs 17.65 %, p = 0.004). In examination of magnetic resonance imaging (MRI), the 78.57 % of anti-AQP4 (+) ABS patients had medulla-predominant involvements in the sagittal view and dorsal-predominant involvements in the axial view. Conclusions: ABS represents an inaugural or limited form of NMO in a high proportion of anti-AQP4 (+) patients

    A multicenter comparison of MOG-IgG cell-based assays

    Get PDF
    Objectives To compares 3 different myelin oligodendrocyte glycoprotein–immunoglobulin G (IgG) cell-based assays (CBAs) from 3 international centers. Methods Serum samples from 394 patients were as follows: acute disseminated encephalomyelitis (28), seronegative neuromyelitis optica (27), optic neuritis (21 single, 2 relapsing), and longitudinally extensive (10 single, 3 recurrent). The control samples were from patients with multiple sclerosis (244), hypergammaglobulinemia (42), and other (17). Seropositivity was determined by visual observation on a fluorescence microscope (Euroimmun fixed CBA, Oxford live cell CBA) or flow cytometry (Mayo live cell fluorescence-activated cell sorting assay). Results Of 25 samples positive by any methodology, 21 were concordant on all 3 assays, 2 were positive at Oxford and Euroimmun, and 2 were positive only at Oxford. Euroimmun, Mayo, and Oxford results were as follows: clinical specificity 98.1%, 99.6%, and 100%; positive predictive values (PPVs) 82.1%, 95.5%, and 100%; and negative predictive values 79.0%, 78.8%, and 79.8%. Of 5 false-positives, 1 was positive at both Euroimmun and Mayo and 4 were positive at Euroimmun alone. Conclusions Overall, a high degree of agreement was observed across 3 different MOG-IgG CBAs. Both live cell-based methodologies had superior PPVs to the fixed cell assays, indicating that positive results in these assays are more reliable indicators of MOG autoimmune spectrum disorders

    Treatment of neuromyelitis optica: state-of-the-art and emerging therapies.

    Get PDF
    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date

    Randomized placebo‐controlled trial of intravenous immunoglobulin in autoimmune LGI1/CASPR2 epilepsy

    Get PDF
    Objective Drug‐resistant seizures are common in patients with leucine‐rich, glioma‐inactivated 1 (LGI1)‐IgG associated and contactin‐associated protein‐like 2 (CASPR2)‐IgG associated encephalitis. We performed the first randomized double‐blind placebo‐controlled trial to evaluate efficacy of intravenous immunoglobulin (IVIG) in reducing seizure frequency. Methods Our enrollment goal was 30 LGI1/CASPR2‐IgG–seropositive adult patients with ≥2 seizures per week. Patients were randomized to receive IVIG (0.5g/kg day 1, 1g/kg day 2, 0.6g/kg weeks 3 and 5) or volume‐matched intravenous normal saline. Following the blinded phase, the nonresponders in the placebo group received IVIG. The primary clinical outcome was 50% reduction in seizure frequency from baseline to 5 weeks. Results After enrollment of 17 patients (LGI1‐IgG, 14; CASPR2‐IgG, 3) over 34 months, the study was terminated due to slow enrollment. Six of 8 patients in the IVIG group were responders, compared to 2 of 9 in the placebo group (p = 0.044, odds ratio = 10.5, 95% confidence interval = 1.1–98.9). For the LGI1‐IgG seropositive subgroup, 6 of 8 patients in the IVIG group were responders, compared to zero of 6 in the placebo group. Two LGI1‐IgG–seropositive patients receiving IVIG, but none receiving placebo, were seizure‐free at the end of the blinded phase. Four of the 6 patients entering the open‐label IVIG arm reported ≥50% reduction in seizure frequency. There were no correlations with LGI1/CASPR2‐IgG1–4 subclasses. Interpretation Superiority of IVIG to placebo reached statistical significance for the primary endpoint for all patients and the subset with LGI1‐IgG. These results have to be interpreted with the caveat that the study did not reach its originally selected sample size

    Aquaporin-4 and myelin oligodendrocyte glycoprotein antibodies in immune-mediated optic neuritis at long-term follow-up

    Get PDF
    OBJECTIVES: To re-evaluate serum samples from our 2007 cohort of patients with single-episode isolated ON (SION), recurrent isolated ON (RION), chronic relapsing inflammatory optic neuropathy (CRION), multiple sclerosis-associated ON (MSON) and neuromyelitis optica (NMO). METHODS: We re-screened 103/114 patients with available serum on live cell-based assays (CBA) for aquaporin-4 (AQP4)-M23-IgG and myelin-oligodendrocyte glycoprotein (MOG)-α1-IgG. Further testing included oligoclonal bands, serum levels of glial fibrillar acidic and neurofilament proteins and S100B. We show the impact of updated serology on these patients. RESULTS: Reanalysis of our original cohort revealed that AQP4-IgG seropositivity increased from 56% to 75% for NMO, 5% to 22% for CRION, 6% to 7% for RION, 0% to 7% for MSON and 5% to 6% for SION. MOG-IgG1 was identified in 25% of RION, 25% of CRION, 10% of SION, 0% of MSON and 0% of NMO. As a result, patients have been reclassified incorporating their autoantibody status. Presenting visual acuity was significantly worse in patients who were AQP4-IgG seropositive (p=0.034), but there was no relationship between antibody seropositivity and either ON relapse rate or visual acuity outcome. CONCLUSIONS: The number of patients with seronegative CRION and RION has decreased due to improved detection of autoantibodies over the past decade. It remains essential that the clinical phenotype guides both antibody testing and clinical management. Careful monitoring of the disease course is key when considering whether to treat with prophylactic immune suppression

    Complement in the pathogenesis of Alzheimer's disease

    Get PDF
    The emergence of complement as an important player in normal brain development and pathological remodelling has come as a major surprise to most scientists working in neuroscience and almost all those working in complement. That a system, evolved to protect the host against infection, should have these unanticipated roles has forced a rethink about what complement might be doing in the brain in health and disease, where it is coming from, and whether we can, or indeed should, manipulate complement in the brain to improve function or restore homeostasis. Complement has been implicated in diverse neurological and neuropsychiatric diseases well reviewed elsewhere, from depression through epilepsy to demyelination and dementia, in most complement drives inflammation to exacerbate the disease. Here, I will focus on just one disease, the most common cause of dementia, Alzheimer’s disease. I will briefly review the current understanding of what complement does in the normal brain, noting, in particular, the many gaps in understanding, then describe how complement may influence the genesis and progression of pathology in Alzheimer’s disease. Finally, I will discuss the problems and pitfalls of therapeutic inhibition of complement in the Alzheimer brain

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Get PDF
    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook
    corecore