406 research outputs found

    Genomic comparison of two O111:H<sup>-</sup> enterohemorrhagic Escherichia coli isolates from a historic hemolytic-uremic syndrome outbreak in Australia

    Full text link
    © 2016, American Society for Microbiology. Enterohemorrhagic Escherichia coli (EHEC) is an important cause of diarrhea and hemolytic-uremic syndrome (HUS) worldwide. Australia's worst outbreak of HUS occurred in Adelaide in 1995 and was one of the first major HUS outbreaks attributed to a non-O157 Shiga-toxigenic E. coli (STEC) strain. Molecular analyses conducted at the time suggested that the outbreak was caused by an O111:H- clone, with strains from later in the outbreak harboring an extra copy of the genes encoding the potent Shiga toxin 2 (Stx2). Two decades later, we have used next-generation sequencing to compare two isolates from early and late in this important outbreak. We analyzed genetic content, single-nucleotide polymorphisms (SNPs), and prophage insertion sites; for the latter, we demonstrate how paired-end sequence data can be leveraged to identify such insertion sites. The two strains are genetically identical except for six SNP differences and the presence of not one but two additional Stx2-converting prophages in the later isolate. Isolates from later in the outbreak were associated with higher levels of morbidity, suggesting that the presence of the additional Stx2-converting prophages is significant in terms of the virulence of this clone

    Inertial sensor real-time feedback enhances the learning of cervical spine manipulation: a prospective study.

    Get PDF
    BACKGROUND: Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. METHODS: Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. RESULTS: There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). CONCLUSION: Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training

    Statistical Multiplicity in Systematic Reviews of Anaesthesia Interventions: A Quantification and Comparison between Cochrane and Non-Cochrane Reviews

    Get PDF
    BACKGROUND: Systematic reviews with meta-analyses often contain many statistical tests. This multiplicity may increase the risk of type I error. Few attempts have been made to address the problem of statistical multiplicity in systematic reviews. Before the implications are properly considered, the size of the issue deserves clarification. Because of the emphasis on bias evaluation and because of the editorial processes involved, Cochrane reviews may contain more multiplicity than their non-Cochrane counterparts. This study measured the quantity of statistical multiplicity present in a population of systematic reviews and aimed to assess whether this quantity is different in Cochrane and non-Cochrane reviews. METHODS/PRINCIPAL FINDINGS: We selected all the systematic reviews published by the Cochrane Anaesthesia Review Group containing a meta-analysis and matched them with comparable non-Cochrane reviews. We counted the number of statistical tests done in each systematic review. The median number of tests overall was 10 (interquartile range (IQR) 6 to 18). The median was 12 in Cochrane and 8 in non-Cochrane reviews (difference in medians 4 (95% confidence interval (CI) 2.0-19.0). The proportion that used an assessment of risk of bias as a reason for doing extra analyses was 42% in Cochrane and 28% in non-Cochrane reviews (difference in proportions 14% (95% CI -8 to 36). The issue of multiplicity was addressed in 6% of all the reviews. CONCLUSION/SIGNIFICANCE: Statistical multiplicity in systematic reviews requires attention. We found more multiplicity in Cochrane reviews than in non-Cochrane reviews. Many of the reasons for the increase in multiplicity may well represent improved methodological approaches and greater transparency, but multiplicity may also cause an increased risk of spurious conclusions. Few systematic reviews, whether Cochrane or non-Cochrane, address the issue of multiplicity

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    In-Depth Analysis of the Antibody Response of Individuals Exposed to Primary Dengue Virus Infection

    Get PDF
    Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization

    β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides

    Get PDF
    Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies

    Reactive oxygen species in phagocytic leukocytes

    Get PDF
    Phagocytic leukocytes consume oxygen and generate reactive oxygen species in response to appropriate stimuli. The phagocyte NADPH oxidase, a multiprotein complex, existing in the dissociated state in resting cells becomes assembled into the functional oxidase complex upon stimulation and then generates superoxide anions. Biochemical aspects of the NADPH oxidase are briefly discussed in this review; however, the major focus relates to the contributions of various modes of microscopy to our understanding of the NADPH oxidase and the cell biology of phagocytic leukocytes

    Sulfhydryl Modification Induces Calcium Entry through IP3-Sensitive Store-Operated Pathway in Activation-Dependent Human Neutrophils

    Get PDF
    As the first line of host defense, neutrophils are stimulated by pro-inflammatory cytokines from resting state, facilitating the execution of immunomodulatory functions in activation state. Sulfhydryl modification has a regulatory role in a wide variety of physiological functions through mediation of signaling transductions in various cell types. Recent research suggested that two kinds of sulfhydryl modification, S-nitrosylation by exogenous nitric oxide (NO) and alkylation by N-ethylmaleimide (NEM), could induce calcium entry through a non-store-operated pathway in resting rat neutrophils and DDT1MF-2 cells, while in active human neutrophils a different process has been observed by us. In the present work, data showed that NEM induced a sharp rising of cytosolic calcium concentration ([Ca2+]c) without external calcium, followed by a second [Ca2+]c increase with readdition of external calcium in phorbol 12-myristate 13-acetate (PMA)-activated human neutrophils. Meanwhile, addition of external calcium did not cause [Ca2+]c change of Ca2+-free PMA-activated neutrophils before application of NEM. These data indicated that NEM could induce believable store-operated calcium entry (SOCE) in PMA-activated neutrophils. Besides, we found that sodium nitroprusside (SNP), a donor of exogenous NO, resulted in believable SOCE in PMA-activated human neutrophils via S-nitrosylation modification. In contrast, NEM and SNP have no effect on [Ca2+]c of resting neutrophils which were performed in suspension. Furthermore, 2-Aminoethoxydiphenyl borate, a reliable blocker of SOCE and an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, evidently abolished SNP and NEM-induced calcium entry at 75 µM, while preventing calcium release in a concentration-dependent manner. Considered together, these results demonstrated that NEM and SNP induced calcium entry through an IP3-sensitive store-operated pathway of human neutrophils via sulfhydryl modification in a PMA-induced activation-dependent manner
    corecore