3,412 research outputs found

    On the role of different Skyrme forces and surface corrections in exotic cluster-decay

    Full text link
    We present cluster decay studies of 56^{56}Ni∗^* formed in heavy-ion collisions using different Skyrme forces. Our study reveals that different Skyrme forces do not alter the transfer structure of fractional yields significantly. The cluster decay half-lives of different clusters lies within \pm 10% for PCM and \pm 15% for UFM.Comment: 13 pages,6 figures and 1 table; in press Pramana Journal of Physics (2010

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate

    The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients

    Get PDF
    We have previously shown that exon 1 of the huntingtin gene does not always splice to exon 2 resulting in the production of a small polyadenylated mRNA (HTTexon1) that encodes the highly pathogenic exon 1 HTT protein. The level of this read-through product is proportional to CAG repeat length and is present in all knock-in mouse models of Huntington’s disease (HD) with CAG lengths of 50 and above and in the YAC128 and BACHD mouse models, both of which express a copy of the human HTT gene. We have now developed specific protocols for the quantitative analysis of the transcript levels of HTTexon1 in human tissue and applied these to a series of fibroblast lines and post-mortem brain samples from individuals with either adult-onset or juvenile-onset HD. We found that the HTTexon1 mRNA is present in fibroblasts from juvenile HD patients and can also be readily detected in the sensory motor cortex, hippocampus and cerebellum of post-mortem brains from HD individuals, particularly in those with early onset disease. This finding will have important implications for strategies to lower mutant HTT levels in patients and the design of future therapeutics

    Significant reductions in human visual gamma frequency by the gaba reuptake inhibitor tiagabine revealed by robust peak frequency estimation

    Get PDF
    The frequency of visual gamma oscillations is determined by both the neuronal excitation-inhibition balance and the time constants of GABAergic processes. The gamma peak frequency has been linked to sensory processing, cognitive function, cortical structure, and may have a genetic contribution. To disentangle the intricate relationship among these factors, accurate and reliable estimates of peak frequency are required. Here, a bootstrapping approach that provides estimates of peak frequency reliability, thereby increasing the robustness of the inferences made on this parameter was developed. The method using both simulated data and real data from two previous pharmacological MEG studies of visual gamma with alcohol and tiagabine was validated. In particular, the study by Muthukumaraswamy et al. [] (Neuropsychopharmacology 38(6):1105-1112), in which GABAergic enhancement by tiagabine had previously demonstrated a null effect on visual gamma oscillations, contrasting with strong evidence from both animal models and very recent human studies was re-evaluated. After improved peak frequency estimation and additional exclusion of unreliably measured data, it was found that the GABA reuptake inhibitor tiagabine did produce, as predicted, a marked decrease in visual gamma oscillation frequency. This result demonstrates the potential impact of objective approaches to data quality control, and provides additional translational evidence for the mechanisms of GABAergic transmission generating gamma oscillations in humans. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc

    Evolutionary Reduction of the First Thoracic Limb in Butterflies

    Get PDF
    Members of the diverse butterfly families Nymphalidae (brush-footed butterflies) and Riodinidae (metalmarks) have reduced first thoracic limbs and only use two pairs of legs for walking. In order to address questions about the detailed morphology and evolutionary origins of these reduced limbs, the three thoracic limbs of 13 species of butterflies representing all six butterfly families were examined and measured, and ancestral limb sizes were reconstructed for males and females separately. Differences in limb size across butterflies involve changes in limb segment size rather than number of limb segments. Reduction of the first limb in both nymphalids and riodinids appears particularly extensive in the femur, but the evolution of these reduced limbs is suggested to be a convergent evolutionary event. Possible developmental differences as well as ecological factors driving the evolution of reduced limbs are discussed

    A Spatial Cluster Analysis of Tractor Overturns in Kentucky from 1960 to 2002

    Get PDF
    Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns.A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns.The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001).This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky
    • …
    corecore