45 research outputs found

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Oxygen uptake kinetics in trained adolescent females

    Get PDF
    Little evidence exists with regard to the effect that exercise training has upon oxygen uptake kinetics in adolescent females. PURPOSE: The aim of the study was to compare [Formula: see text] and muscle deoxygenation kinetics in a group of trained (Tr) and untrained (Utr) female adolescents. METHOD: Twelve trained (6.4 ± 0.9 years training, 10.3 ± 1.4 months per year training, 5.2 ± 2.0 h per week) adolescent female soccer players (age 14.6 ± 0.7 years) were compared to a group (n = 8) of recreationally active adolescent girls (age 15.1 ± 0.6 years) of similar maturity status. Subjects underwent two, 6-min exercise transitions at a workload equivalent to 80 % of lactate threshold from a 3-min baseline of 10 W. All subjects had a passive rest period of 1 h between each square-wave transition. Breath-by-breath oxygen uptake and muscle deoxygenation were measured throughout and were modelled via a mono-exponential decay with a delay relative to the start of exercise. RESULT: Peak [Formula: see text] was significantly (p < 0.05) greater in the Tr compared to the Utr (Tr: 43.2 ± 3.2 mL kg(-1 )min(-1) vs. Utr: 34.6 ± 4.0 mL kg(-1 )min(-1)). The [Formula: see text] time constant was significantly (p < 0.05) faster in the Tr compared to the Utr (Tr: 26.3 ± 6.9 s vs. Utr: 35.1 ± 11.5 s). There was no inter-group difference in the time constant for muscle deoxygenation kinetics (Tr: 8.5 ± 3.0 s vs. Utr: 12.4 ± 8.3 s); a large effect size, however, was demonstrated (-0.804). CONCLUSION: Exercise training and/or genetic self-selection results in faster kinetics in trained adolescent females. The faster [Formula: see text] kinetics seen in the trained group may result from enhanced muscle oxygen utilisation

    The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community—Implications for Therapeutic Management

    Get PDF
    International audienceBackground Given the polymicrobial nature of pulmonary infections in patients with cystic fibrosis (CF), it is essential to enhance our knowledge on the composition of the microbial community to improve patient management. In this study, we developed a pyrosequencing approach to extensively explore the diversity and dynamics of fungal and prokaryotic populations in CF lower airways. Methodology and Principal Findings Fungi and bacteria diversity in eight sputum samples collected from four adult CF patients was investigated using conventional microbiological culturing and high-throughput pyrosequencing approach targeting the ITS2 locus and the 16S rDNA gene. The unveiled microbial community structure was compared to the clinical profile of the CF patients. Pyrosequencing confirmed recently reported bacterial diversity and observed complex fungal communities, in which more than 60% of the species or genera were not detected by cultures. Strikingly, the diversity and species richness of fungal and bacterial communities was significantly lower in patients with decreased lung function and poor clinical status. Values of Chao1 richness estimator were statistically correlated with values of the Shwachman-Kulczycki score, body mass index, forced vital capacity, and forced expiratory volume in 1 s (p = 0.046, 0.047, 0.004, and 0.001, respectively for fungal Chao1 indices, and p = 0.010, 0.047, 0.002, and 0.0003, respectively for bacterial Chao1 values). Phylogenetic analysis showed high molecular diversities at the sub-species level for the main fungal and bacterial taxa identified in the present study. Anaerobes were isolated with Pseudomonas aeruginosa, which was more likely to be observed in association with Candida albicans than with Aspergillus fumigatus

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Tools for surveillance of anti-malarial drug resistance: an assessment of the current landscape

    Full text link

    Kondo effect in magnetic tunnel junctions

    No full text
    Tunneling magnetoresistance was found to be suppressed with decreasing temperature for magnetic tunnel junctions (MTJs) oxidized under high plasma power. A strong temperature dependence of the junction resistance was observed, along with zero-bias anomalies of dynamic resistance at low temperatures. Resistance shows a logarithmic dependence on temperature, and resistance versus temperature exhibits a scaling behavior. Our experimental data can be explained in a consistent way by the Kondo effect in the MTJs with the Kondo temperature T-K=20-30 K.open1119sciescopu
    corecore