30 research outputs found

    Healthcare use for acute gastrointestinal illness in two Inuit communities: Rigolet and Iqaluit, Canada

    Get PDF
    Background. The incidence of self-reported acute gastrointestinal illness (AGI) in Rigolet, Nunatsiavut, and Iqaluit, Nunavut, is higher than reported elsewhere in Canada; as such, understanding AGI-related healthcare use is important for healthcare provision, public health practice and surveillance of AGI. Objectives: This study described symptoms, severity and duration of self-reported AGI in the general population and examined the incidence and factors associated with healthcare utilization for AGI in these 2 Inuit communities. Design: Cross-sectional survey data were analysed using multivariable exact logistic regression to examine factors associated with individuals’ self-reported healthcare and over-the-counter (OTC) medication utilization related to AGI symptoms. Results: In Rigolet, few AGI cases used healthcare services [4.8% (95% CI=1.5-14.4%)]; in Iqaluit, some cases used healthcare services [16.9% (95% CI=11.2-24.7%)]. Missing traditional activities due to AGI (OR=3.8; 95% CI=1.18-12.4) and taking OTC medication for AGI symptoms (OR=3.8; 95% CI=1.2-15.1) were associated with increased odds of using healthcare services in Iqaluit. In both communities, AGI severity and secondary symptoms (extreme tiredness, headache, muscle pains, chills) were significantly associated with increased odds of taking OTC medication. Conclusions: While rates of self-reported AGI were higher in Inuit communities compared to non-Inuit communities in Canada, there were lower rates of AGI-related healthcare use in Inuit communities compared to other regions in Canada. As such, the rates of healthcare use for a given disease can differ between Inuit and non-Inuit communities, and caution should be exercised in making comparisons between Inuit and non-Inuit health outcomes based solely on clinic records and healthcare use

    Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae

    Get PDF
    Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency

    ADAMTS-9 in Mouse Cartilage Has Aggrecanase Activity That Is Distinct from ADAMTS-4 and ADAMTS-5

    Get PDF
    A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 are the principal aggrecanases in mice and humans; however, mice lacking the catalytic domain of both enzymes (TS-4/5∆cat) have no skeletal phenotype, suggesting there is an alternative aggrecanase for modulating normal growth and development in these mice. We previously identified aggrecanase activity that (a) cleaved at E↓G rather than E↓A bonds in the aggrecan core protein, and (b) was upregulated by retinoic acid but not IL-1α. The present study aimed to identify the alternative aggrecanase. Femoral head cartilage explants from TS-4/5∆cat mice were stimulated with IL-1α or retinoic acid and total RNA was analysed by microarray. In addition to ADAMTS-5 and matrix metalloproteinase (MMP)-13, which are not candidates for the novel aggrecanase, the microarray analyses identified MMP-11, calpain-5 and ADAMTS-9 as candidate aggrecanases upregulated by retinoic acid. When calpain-5 and MMP-11 failed to meet subsequent criteria, ADAMTS-9 emerged as the most likely candidate for the novel aggrecanase. Immunohistochemistry revealed ADAMTS-9 expression throughout the mouse growth plate and strong expression, particularly in the proliferative zone of the TS-4/5-∆cat mice. In conclusion, ADAMTS-9 has a novel specificity for aggrecan, cleaving primarily at E↓G rather than E↓A bonds in mouse cartilage. ADAMTS-9 might have more important roles in normal skeletal development compared with ADAMTS-4 and ADAMTS-5, which have key roles in joint pathology

    High-bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to mouse models of osteoarthritis

    No full text
    Murine models of osteoarthritis (OA) and post-traumatic OA have been widely used to study the development and progression of these diseases using genetically engineered mouse strains along with surgical or biochemical interventions. However, due to the small size and thickness of murine cartilage, the relationship between mechanical properties, molecular structure and cartilage composition has not been well studied. We adapted a recently developed AFM-based nano-rheology system to probe the dynamic nanomechanical properties of murine cartilage over a wide frequency range of 1 Hz to 10 kHz, and studied the role of glycosaminoglycan (GAG) on the dynamic modulus and poroelastic properties of murine femoral cartilage. We showed that poroelastic properties, highlighting fluid-solid interactions, are more sensitive indicators of loss of mechanical function compared to equilibrium properties in which fluid flow is negligible. These fluid-flow-dependent properties include the hydraulic permeability (an indicator of the resistance of matrix to fluid flow) and the high frequency modulus, obtained at high rates of loading relevant to jumping and impact injury in vivo. Utilizing a fibril-reinforced finite element model, we estimated the poroelastic properties of mouse cartilage over a wide range of loading rates for the first time, and show that the hydraulic permeability increased by a factor ~16 from knormal=7.80×10(-16)±1.3×10(-16) m(4)/N s to kGAG-depleted=1.26×10(-14)±6.73×10(-15) m(4)/N s after GAG depletion. The high-frequency modulus, which is related to fluid pressurization and the fibrillar network, decreased significantly after GAG depletion. In contrast, the equilibrium modulus, which is fluid-flow independent, did not show a statistically significant alteration following GAG depletion

    A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) Forms Catalytically Active Oligomers

    No full text
    The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼ 400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE(373) neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors
    corecore