64 research outputs found
On the Resolution of Critical Flow Regions in Inviscid Linear And Nonlinear Instability Calculations
Numerical methods for tackling the inviscid instability problem are discussed. Convergence is demon- strated to be a necessary, but not a sufficient condition for accuracy. Inviscid flow physics set requirements regarding grid-point distribution in order for physically accurate results to be obtained. These requirements are relevant to the viscous problem also and are shown to be related to the resolution of the critical layers. In this respect, high-resolution nonlinear calculations based on the inviscid initial-boundary-value problem are presented for a model shear-layer flow, aiming at identification of the regions that require attention in the course of high-Reynolds-number viscous calculations. The results bear a remarkable resemblance with those pertinent to viscous flow, with a cascade of high-shear regions being shed towards the vortex-core centre as time progresses. In parallel, numerical instability related to the finite-time singularity of the nonlinear equations solved globally contaminates and eventually destroys the simulations, irrespective of resolution
Therapeutic Potential of HDL in Cardioprotection and Tissue Repair
Epidemiological studies support a strong association between high-density lipoprotein (HDL) cholesterol levels and heart failure incidence. Experimental evidence from different angles supports the view that low HDL is unlikely an innocent bystander in the development of heart failure. HDL exerts direct cardioprotective effects, which are mediated via its interactions with the myocardium and more specifically with cardiomyocytes. HDL may improve cardiac function in several ways. Firstly, HDL may protect the heart against ischaemia/reperfusion injury resulting in a reduction of infarct size and thus in myocardial salvage. Secondly, HDL can improve cardiac function in the absence of ischaemic heart disease as illustrated by beneficial effects conferred by these lipoproteins in diabetic cardiomyopathy. Thirdly, HDL may improve cardiac function by reducing infarct expansion and by attenuating ventricular remodelling post-myocardial infarction. These different mechanisms are substantiated by in vitro, ex vivo, and in vivo intervention studies that applied treatment with native HDL, treatment with reconstituted HDL, or human apo A-I gene transfer. The effect of human apo A-I gene transfer on infarct expansion and ventricular remodelling post-myocardial infarction illustrates the beneficial effects of HDL on tissue repair. The role of HDL in tissue repair is further underpinned by the potent effects of these lipoproteins on endothelial progenitor cell number, function, and incorporation, which may in particular be relevant under conditions of high endothelial cell turnover. Furthermore, topical HDL therapy enhances cutaneous wound healing in different models. In conclusion, the development of HDL-targeted interventions in these strategically chosen therapeutic areas is supported by a strong clinical rationale and significant preclinical data.status: publishe
Evolutionary algorithm for an inventory location problem
10.1007/978-3-540-48584-1_22Studies in Computational Intelligence49613-62
Establishment of fetomaternal tolerance through glycan-mediated B cell suppression
Discrimination of self from non-self is fundamental to a wide range of immunological processes1. During pregnancy, the mother does not recognize the placenta as immunologically foreign because antigens expressed by trophoblasts, the placental cells that interface with the maternal immune system, do not activate maternal T cells2. Currently, these activation defects are thought to reflect suppression by regulatory T cells3. By contrast, mechanisms of B cell tolerance to trophoblast antigens have not been identified. Here we provide evidence that glycan-mediated B cell suppression has a key role in establishing fetomaternal tolerance in mice. B cells specific for a model trophoblast antigen are strongly suppressed through CD22-LYN inhibitory signalling, which in turn implicates the sialylated glycans of the antigen as key suppressive determinants. Moreover, B cells mediate the MHC-class-II-restricted presentation of antigens to CD4+ T cells, which leads to T cell suppression, and trophoblast-derived sialoglycoproteins are released into the maternal circulation during pregnancy in mice and humans. How protein glycosylation promotes non-immunogenic placental self-recognition may have relevance to immune-mediated pregnancy complications and to tumour immune evasion. We also anticipate that our findings will bolster efforts to harness glycan biology to control antigen-specific immune responses in autoimmune disease
- …