31 research outputs found

    Subregional DXA-derived vertebral bone mineral measures are stronger predictors of failure load in specimens with lower areal bone mineral density, compared to those with higher areal bone mineral density

    Get PDF
    Measurement of areal bone mineral density (aBMD) in intravertebral subregions may increase the diagnostic sensitivity of dual-energy X-ray absorptiometry (DXA)-derived parameters for vertebral fragility. This study investigated whether DXA-derived bone parameters in vertebral subregions were better predictors of vertebral bone strength in specimens with low aBMD, compared to those with higher aBMD. Twenty-five lumbar vertebrae (15 embalmed and 10 fresh-frozen) were scanned with posteroanterior- (PA) and lateral-projection DXA, and then mechanically tested in compression to ultimate failure. Whole-vertebral aBMD and bone mineral content (BMC) were measured from the PA- and lateral-projection scans and within 6 intravertebral subregions. Multivariate regression was used to predict ultimate failure load by BMC, adjusted for vertebral size and specimen fixation status across the whole specimen set, and when subgrouped into specimens with low aBMD and high aBMD. Adjusted BMC explained a substantial proportion of variance in ultimate vertebral load, when measured over the whole vertebral area in lateral projection (adjusted R2 0.84) and across the six subregions (ROIs 2–7) (adjusted R2 range 0.58–0.78). The association between adjusted BMC, either measured subregionally or across the whole vertebral area, and vertebral failure load, was increased for the subgroup of specimens with identified ‘low aBMD’, compared to those with ‘high aBMD’, particularly in the anterior subregion where the adjusted R2 differed by 0.44. The relative contribution of BMC measured in vertebral subregions to ultimate failure load is greater among specimens with lower aBMD, compared to those with higher aBMD, particularly in the anterior subregion of the vertebral body

    Thoracic spine pain in the general population: Prevalence, incidence and associated factors in children, adolescents and adults. A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thoracic spine pain (TSP) is experienced across the lifespan by healthy individuals and is a common presentation in primary healthcare clinical practice. However, the epidemiological characteristics of TSP are not well documented compared to neck and low back pain. A rigorous evaluation of the prevalence, incidence, correlates and risk factors needs to be undertaken in order for epidemiologic data to be meaningfully used to develop evidence-based prevention and treatment recommendations for TSP.</p> <p>Methods</p> <p>A systematic review method was followed to report the evidence describing prevalence, incidence, associated factors and risk factors for TSP among the general population. Nine electronic databases were systematically searched to identify studies that reported either prevalence, incidence, associated factors (cross-sectional study) or risk factors (prospective study) for TSP in healthy children, adolescents or adults. Studies were evaluated for level of evidence and method quality.</p> <p>Results</p> <p>Of the 1389 studies identified in the literature, 33 met the inclusion criteria for this systematic review. The mean (SD) quality score (out of 15) for the included studies was 10.5 (2.0). TSP prevalence data ranged from 4.0–72.0% (point), 0.5–51.4% (7-day), 1.4–34.8% (1-month), 4.8–7.0% (3-month), 3.5–34.8% (1-year) and 15.6–19.5% (lifetime). TSP prevalence varied according to the operational definition of TSP. Prevalence for any TSP ranged from 0.5–23.0%, 15.8–34.8%, 15.0–27.5% and 12.0–31.2% for 7-day, 1-month, 1-year and lifetime periods, respectively. TSP associated with backpack use varied from 6.0–72.0% and 22.9–51.4% for point and 7-day periods, respectively. TSP interfering with school or leisure ranged from 3.5–9.7% for 1-year prevalence. Generally, studies reported a higher prevalence for TSP in child and adolescent populations, and particularly for females. The 1 month, 6 month, 1 year and 25 year incidences were 0–0.9%, 10.3%, 3.8–35.3% and 9.8% respectively. TSP was significantly associated with: concurrent musculoskeletal pain; growth and physical; lifestyle and social; backpack; postural; psychological; and environmental factors. Risk factors identified for TSP in adolescents included age (being older) and poorer mental health.</p> <p>Conclusion</p> <p>TSP is a common condition in the general population. While there is some evidence for biopsychosocial associations it is limited and further prospectively designed research is required to inform prevention and management strategies.</p

    Thoracic spine pain in the general population: Prevalence, incidence and associated factors in children, adolescents and adults. A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thoracic spine pain (TSP) is experienced across the lifespan by healthy individuals and is a common presentation in primary healthcare clinical practice. However, the epidemiological characteristics of TSP are not well documented compared to neck and low back pain. A rigorous evaluation of the prevalence, incidence, correlates and risk factors needs to be undertaken in order for epidemiologic data to be meaningfully used to develop evidence-based prevention and treatment recommendations for TSP.</p> <p>Methods</p> <p>A systematic review method was followed to report the evidence describing prevalence, incidence, associated factors and risk factors for TSP among the general population. Nine electronic databases were systematically searched to identify studies that reported either prevalence, incidence, associated factors (cross-sectional study) or risk factors (prospective study) for TSP in healthy children, adolescents or adults. Studies were evaluated for level of evidence and method quality.</p> <p>Results</p> <p>Of the 1389 studies identified in the literature, 33 met the inclusion criteria for this systematic review. The mean (SD) quality score (out of 15) for the included studies was 10.5 (2.0). TSP prevalence data ranged from 4.0–72.0% (point), 0.5–51.4% (7-day), 1.4–34.8% (1-month), 4.8–7.0% (3-month), 3.5–34.8% (1-year) and 15.6–19.5% (lifetime). TSP prevalence varied according to the operational definition of TSP. Prevalence for any TSP ranged from 0.5–23.0%, 15.8–34.8%, 15.0–27.5% and 12.0–31.2% for 7-day, 1-month, 1-year and lifetime periods, respectively. TSP associated with backpack use varied from 6.0–72.0% and 22.9–51.4% for point and 7-day periods, respectively. TSP interfering with school or leisure ranged from 3.5–9.7% for 1-year prevalence. Generally, studies reported a higher prevalence for TSP in child and adolescent populations, and particularly for females. The 1 month, 6 month, 1 year and 25 year incidences were 0–0.9%, 10.3%, 3.8–35.3% and 9.8% respectively. TSP was significantly associated with: concurrent musculoskeletal pain; growth and physical; lifestyle and social; backpack; postural; psychological; and environmental factors. Risk factors identified for TSP in adolescents included age (being older) and poorer mental health.</p> <p>Conclusion</p> <p>TSP is a common condition in the general population. While there is some evidence for biopsychosocial associations it is limited and further prospectively designed research is required to inform prevention and management strategies.</p

    PLCL1 rs7595412 variation is not associated with hip bone size variation in postmenopausal Danish women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone size (BS) variation is under strong genetic control and plays an important role in determining bone strength and fracture risk. Recently, a genome-wide association study identified polymorphisms associated with hip BS variation in the <it>PLCL1 </it>(phospholipase c-like 1) locus. Carriers of the major A allele of the most significant polymorphism, rs7595412, have around 17% larger hip BS than non-carriers. We therefore hypothesized that this polymorphism may also influence postmenopausal complications.</p> <p>Methods</p> <p>The effects of rs7595412 on hip BS, bone mineral density (BMD), vertebral fractures, serum Crosslaps and osteocalcin levels were analyzed in 1,191 postmenopausal Danish women.</p> <p>Results</p> <p>This polymorphism had no influence on hip and spine BS as well as on femur and spine BMD. Women carrying at least one copy of the A allele had lower levels of serum osteocalcin as compared with those homozygous for the G allele (p = 0.03) whereas no effect on serum Crosslaps was detected. Furthermore, women homozygous for the A allele were more affected by vertebral fractures than those carrying at least one copy of the G allele (p = 0.04).</p> <p>Conclusions</p> <p>In postmenopausal women, our results suggest that the <it>PLCL1 </it>rs7595412 polymorphism has no obvious effect on hip BS or BMD but may be nominally associated with increased proportion of vertebral fracture and increased levels of osteocalcin.</p

    The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo

    Get PDF
    The aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles. © 2006 Springer-Verlag

    3 Een 23-jarige studente met houdingsgebonden unilaterale hoofd- en nekpijn

    No full text
    corecore