9 research outputs found

    Benefits and risks of Iron interventions in children (BRISC): protocol for a three-arm parallel-group randomised controlled field trial in Bangladesh

    Get PDF
    INTRODUCTION: Anaemia is a major global health problem affecting about 43% of preschool children globally and 60% of 6-24-month-old children in rural Bangladesh, half of which is attributed to iron deficiency (ID). Although WHO recommends universal supplementation with iron or home fortification with iron-containing multiple micronutrient powders (MMPs) to children under 2 years, evidence for benefits of these interventions on childhood development (a key rationale for these interventions) and harms (especially infection) remains limited. This study aims to evaluate the impact of iron or MMPs supplementation compared with placebo on (a) children's development, (b) growth, (c) morbidity from infections and (d) haematological and iron indices. METHODS AND ANALYSIS: This study is a three-arm, blinded, double-dummy, parallel-group, placebo-controlled superiority trial using stratified individual block randomisation. The trial will randomise 3300 children aged 8-9 months equally to arm 1: iron syrup (12.5 mg elemental iron), placebo MMPs; arm 2: MMPs (including 12.5 mg elemental iron), placebo syrup; and arm 3: placebo syrup, placebo MNPs. Children will receive interventions for 3 months based on WHO recommendations and then be followed up for 9 months post intervention. The primary outcome is cognitive composite score measured by Bayley III. Secondary outcomes include motor and language composite score by Bayley III, behaviour rating using selected items from Wolke's rating scales and BSID-II behaviour ratings, temperament, growth, haemoglobin, anaemia and iron status, and infectious morbidity. Outcomes will be measured at baseline, at the end of 3-month intervention and after 9 months postintervention follow-up. ETHICS AND DISSEMINATION: The trial has been approved by the Ethical Review Committee of icddr,b (Dhaka, Bangladesh) and the Melbourne Health Human Research Ethics Committee (Melbourne, Australia). Results of the study will be disseminated through scientific publications, presentations at international meetings and policy briefs to key stakeholders. TRIAL REGISTRATION NUMBER: ACTRN12617000660381;Pre-results. WHO UNIVERSAL TRIAL NUMBER: U1111-1196-1125

    Accessory subunits are integral for assembly and function of human mitochondrial complex I

    Get PDF
    Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial respiratory chain and is composed of 45 subunits in humans, making it one of the largest known multi-subunit membrane protein complexes. Complex I exists in supercomplex forms with respiratory chain complexes III and IV, which are together required for the generation of a transmembrane proton gradient used for the synthesis of ATP. Complex I is also a major source of damaging reactive oxygen species and its dysfunction is associated with mitochondrial disease, Parkinson's disease and ageing. Bacterial and human complex I share 14 core subunits that are essential for enzymatic function; however, the role and necessity of the remaining 31 human accessory subunits is unclear. The incorporation of accessory subunits into the complex increases the cellular energetic cost and has necessitated the involvement of numerous assembly factors for complex I biogenesis. Here we use gene editing to generate human knockout cell lines for each accessory subunit. We show that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability. Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the stability of other subunits residing in the same structural module. Analysis of proteomic changes after the loss of specific modules revealed that ATP5SL and DMAC1 are required for assembly of the distal portion of the complex I membrane arm. Our results demonstrate the broad importance of accessory subunits in the structure and function of human complex I. Coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level

    Researching Student Experiences in Elementary and Secondary School: An Evolving Field of Study

    No full text

    Fruit Development, Ripening and Quality Related Genes in the Papaya Genome

    No full text
    corecore