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Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial 

respiratory chain (RC) and is composed of 44 different subunits in humans, making it 

one of the largest known multi-subunit membrane protein complexes1. Complex I exists 

in supercomplex forms with RC complexes III and IV, which are together required for 



the generation of a transmembrane proton gradient used for the synthesis of ATP2. 

Complex I is also a major source of damaging reactive oxygen species and its 

dysfunction is associated with mitochondrial disease, Parkinson’s disease and aging3-5. 

Bacterial and human complex I share 14 core subunits essential for enzymatic function, 

however the role and requirement of the remaining 31 human accessory subunits is 

unclear1,6.  The incorporation of accessory subunits into the complex increases the 

cellular energetic cost and has necessitated the involvement of numerous assembly 

factors for complex I biogenesis. We used gene-editing to generate human knockout cell 

lines for each accessory subunit. We found that 25 subunits are strictly required for 

assembly of a functional complex and one subunit is essential for cell viability. 

Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the 

stability of other subunits residing in the same structural module. Analysis of proteomic 

changes following loss of specific modules revealed ATP5SL and DMAC1 as novel 

factors required for assembly of the distal portion of the complex I membrane arm. Our 

results demonstrate the broad importance of accessory subunits in the structure and 

function of human complex I.  Coupling gene-editing technology with proteomics 

represents a powerful tool for dissecting large multi-subunit complexes and enabling the 

study of complex dysfunction at a cellular level. 

Mitochondrial complex I is a boot-shaped structure of ~1MDa with a hydrophilic matrix arm 

and a hydrophobic membrane arm7-9. These arms are assembled via intermediate modules 

through transient association with assembly factors10. The N-module at the tip of the matrix 

arm is involved in oxidation of NADH while the Q-module bridges the matrix and membrane 

arms and is involved in transfer of electrons along Fe-S clusters to ubiquinone. With the 

reduction of ubiquinone, four protons are pumped across the inner-membrane (IM) into the 

intermembrane space (IMS). The core structure of the membrane arm is defined by 7 subunits 



encoded by mitochondrial DNA (mtDNA); ND1 at the base of the Q-module, followed by 

ND3, 6, and 4L, and the antiporter-like subunits ND2, ND4 and ND58,9. The mechanisms of 

NADH oxidation and proton pumping are conserved from bacteria to humans, with 14 core 

(including the 7 mtDNA-encoded) subunits performing these roles11.  

To investigate the importance of the 31 accessory subunits, we used TALEN and 

CRISPR/Cas9 gene-editing tools to disrupt their genes in human HEK293T cells 

(Supplementary Table 1). Of the knockout (KO) lines generated, 24 were unable to grow on 

galactose-containing media indicating mitochondrial respiration defects (Fig. 1). Blue-native 

(BN)-PAGE and immunoblot analysis for subunits NDUFA9, NDUFA13 and NDUFB11, 

(located in different regions of the complex) revealed that loss of an individual accessory 

subunit often disrupted assembly of complex I (Fig. 1). Analysis of the supercomplex was 

also disrupted in the same cell lines (Extended Data Fig. 1) while assembly of complexes III 

and IV was not affected (Extended Data Fig. 2). For cell lines still capable of growth on 

galactose, a complex was present that did not markedly differ from the migration of mature 

complex I (Fig. 1, lanes 2-6). Other cell lines showed different subcomplexes including one 

that migrated slightly faster than complex I, consistent with loss of the N-module12 (Fig. 1, 

lanes 5-8, marked with ‡).  

In contrast to all other subunits, we found NDUFAB1 to be essential for cell viability 

(Extended Data Fig. 3a-c). NDUFAB1 is unique as it is the only subunit with a 2:1 

stoichiometry within the complex, where it binds LYR motifs present in NDUFA6 and 

NDUFB97. NDUFAB1 is also the mitochondrial acyl carrier protein13 and associates with 

proteins involved in fatty-acid synthesis (LIPT2) and other proteins (Extended Data Fig. 3d; 

Supplementary Table 2) including LYRM7 that promotes biogenesis of the complex III 

Rieske subunit (UQCRFS1). An NDUFAB1KO cell line was generated by complementing 

cells with the yeast mitochondrial acyl carrier protein (yACP1) (Extended Data Fig. 3e, 



Supplementary Table 1). Since NDUFAB1KO lacks assembled complex I and dies in 

galactose media (Fig. 1; Extended Data Fig. 3c, e), the essential role of NDUFAB1 is 

independent of complex I.  

We selected a subset of representative KO lines for further analysis (Fig. 2a). Rescue of each 

line restored complex I assembly in all cases (Fig. 2b). Cell lines lacking NDUFV3, 

NDUFA12 or NDUFA7 that still grew on galactose, had negligible to moderate reductions in 

complex I activity and mitochondrial respiratory capacity (Fig. 2c). Knockout of NDUFS6 

led to most of the N-module dissociating from complex I, however this did not severely 

impact complex I activity or respiratory capacity (Fig. 2c). This is consistent with previous 

patient cell studies12 and suggests that the complex is less stable during BN-PAGE (Extended 

Data Fig. 4a). In NDUFA12KO cells, the complex I assembly factor NDUFAF2, substituted 

for its paralog NDUFA12 leading to complex I appearing fully assembled (Extended Data 

Fig. 4b). In NDUFA2KO cells, no N-module was present (Extended Data Fig. 4a) and these 

cells showed severe defects in complex I activity and respiration (Fig. 2c). We hypothesize 

that NDUFV3 may be the terminally assembled subunit of complex I due to its location9 and 

lack of defects upon its loss. In vitro imported NDUFV3 also readily exchanged with the 

endogenous assembled protein (Extended Data Fig. 4c), while only bona fide subunits were 

enriched without assembly factors when complex I was isolated using NDUFV3 as bait 

(Extended Data Fig. 3d, Supplementary Tables 3-4). In contrast to most N-module subunits, 

knockout of membrane arm subunits resulted in severe mitochondrial respiration defects (Fig. 

2c) and loss of assembled complex I with the concomitant accumulation of subcomplexes 

(Fig. 1).  

The severity of knockouts observed for each accessory subunit on complex I assembly 

appeared to largely predict the impact of mutations in patients with mitochondrial disease 

(Extended Data Table 1)14. Almost all patients reported with mutations in genes encoding 



three of the subunits that exhibit mild assembly defects (NDUFA12, NDUFS4, NDUFS6), 

have two nonsense mutations that block subunit expression. In contrast, patients having 

defects in 8 accessory subunits showing severe assembly defects carry missense mutations, 

suggesting that the complete loss of any of these subunits may be incompatible with human 

life (Extended Data Table 1).  

Next we employed stable isotope labelling with amino acids in cell culture (SILAC) and 

quantitative mass-spectrometry to determine changes in levels of cellular proteins in the 

representative KO lines (Supplementary Table 5). Most of the >6,000 cellular proteins 

detected did not significantly differ from control except for complex I subunits themselves, 

which were consistently downregulated (Fig. 2e, Extended Data Fig. 5a). Of the other 20 

mitochondrial proteins whose levels were changed >2-fold, 9 were similarly responsive in a 

cell line lacking functional complex IV15 (Extended Data Fig. 5b; Supplementary Table 6) 

pointing to these gene products being related to general defects in oxidative phosphorylation. 

Besides affected gene sets related to complex I and oxidative phosphorylation, other affected 

pathways related to metabolism, transporter activity, translation and DNA replication (Fig. 

2e; Extended Data Fig. 5d).  

Hierarchical clustering of protein ratios in the representative KO cell lines (Extended Data 

Fig. 5a) identified clusters of complex I subunits that are similarly located in the structure 

(e.g. NDUFS4, NDUFA7 and NDUFA12). To increase the resolution of our clustering 

analysis, we measured the levels of mitochondrial proteins in the remaining 20 KO cell lines 

(Fig. 3a; Supplementary Table 5). Using the colour scheme from our heat maps, we mapped 

the levels of individual subunits in each KO onto the recently solved structure of bovine 

complex I9 (Fig. 3b; Extended Data Fig. 6a). We uncovered clear structural correlations 

including the loss of subunits around the N-module upon KO of subunit NDUFA2 as well as 

loss of subunits from the distal membrane module in NDUFB11KO cells (Fig. 3b). 



Transcriptomic analysis of the representative KO cell lines revealed that the only genes with 

more than a two-fold difference in expression are those that were gene-edited (Extended Data 

Fig. 7). We conclude that the mutated target genes may be subject to nonsense-mediated 

mRNA decay while the other complex I subunits whose levels decrease are most likely 

proteolytically degraded16. 

Hierarchical clustering analysis of complex I subunits (Supplementary Table 7) identified 

five clusters containing subunits with similar stabilities across knockouts (Fig. 3a). Mapping 

of these clusters to the structure of bovine complex I9 revealed distinct modules (Fig. 3c; 

Extended Data 6b). One cluster contains subunits encompassing the N-module while each 

other cluster partitions with mtDNA-encoded “ND” subunits. NDUFAB1 could not be 

assigned to any cluster with its level being almost unchanged, consistent with its separate 

functions. Subunits NDUFA9, NDUFB4, NDUFB6 and NDUFA11 were not clearly mapped 

to an individual module and may reside at module interfaces. 

Complex I is assembled via a series of intermediate assembly modules and requires the 

involvement of >10 known assembly factors17,18. We generated KO cell lines of assembly 

factors known to function at different steps – NDUFAF1, NDUFAF2, NDUFAF4, 

NDUFAF6 and TIMMDC1 (Extended Data Fig. 8a). BN-PAGE analysis showed a reduction 

or loss of complex I assembly (Fig. 4a). Proteomic analysis indicated that complex I subunits 

belonging to different modules were affected to varying degrees (Extended Data Fig. 8b, c). 

The profile of changes in complex I subunits in assembly factor KO lines correlated with 

groups of complex I KO lines whose subunits belong to distinct modules (Fig. 4b) consistent 

with assembly models18. Since little is known about the assembly of the distal membrane 

module, we searched our proteomic dataset for proteins altered in KOs belonging to the ND4 

and ND5 module relative to those belonging to ND1 and ND2 modules (Supplementary 

Table 8). ATP5SL, recently identified in a complex I subassembly17, accumulated in ND4- 



and ND5-module KO lines (Fig. 4c). In a separate analysis, the uncharacterized DMAC1 

(TMEM261) was at elevated levels in membrane arm subunit KO lines when compared 

against matrix arm subunit KO lines (Fig. 4c; Supplementary Table 9). KO of either ATP5SL 

or DMAC1 led to specific and severe complex I assembly defects (Fig. 4d, Extended Data 

Fig. 9a, b) and turnover of N-module and distal membrane arm subunits (Extended Data Fig. 

9c, d). Integration of the proteomic profiles in DMAC1KO and ATP5SLKO lines with those 

originating from our accessory subunit KO lines, indicated a strong correlation with the ND5 

module (Fig. 4b).  

While DMAC1 is absent from the MitoCarta2.0 database19, we found it to be a mitochondrial 

inner-membrane protein (Extended Data Fig. 9e, f). Pulse-chase analysis revealed that 

mtDNA-encoded subunits formed a 600 kDa intermediate complex20 in DMAC1KO cells but 

then dissociated (Extended Data Fig. 9g) indicating a late-stage assembly defect similar to 

that seen upon loss of complex I assembly factor FOXRED121.  Proteins highly enriched with 

ATP5SL included complex I subunits of the ND4 module and FOXRED1 (Fig. 4e) while 

proteins enriched with DMAC1 included subunits ND4 and ND5, plus ATP5SL and 

FOXRED1 along with OXA1L, the membrane insertase for mtDNA-encoded subunits (Fig. 

4e; Supplementary Table 10-11). ATP5SL and DMAC1 also interacted with newly translated 

ND5 (Fig. 4f). Since other complex I subunits, assembly factors and subunits of complexes 

III and IV were enriched in DMAC1 pull-downs, the integration of the ND4 and ND5 

modules in the assembly pathway may intersect with supercomplex formation and occur 

concurrently with addition of the N-module, the final step in complex I assembly22. Due to 

the association of DMAC1 with the biogenesis of the distal region of complex I, we termed 

the protein Distal Membrane-arm Assembly Component 1.  

In summary, we demonstrate that accessory subunits are integrally associated in modules, 

defined by the core structural and functional subunits of human complex I, assembly of 



which require the concerted action of assembly factors. By defining the impact of individual 

subunit KOs, our data will facilitate validation of putative pathogenic variants found in 

complex I genes in patients while DMAC1 and ATP5SL also represent new pathological gene 

targets. Our approach also serves as a powerful example of how coupling gene-editing and 

quantitative proteomics allows rapid insights into previously inaccessible aspects of human 

cellular function. 

 

References 

 

1 Sazanov, L. A. A giant molecular proton pump: structure and mechanism of respiratory 

complex I. Nat. Rev. Mol. Cell Biol. 16, 375-388 (2015). 

2 Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the 

mitochondrial electron transport chain. Science 340, 1567-1570 (2013). 

3 Vafai, S. B. & Mootha, V. K. Mitochondrial disorders as windows into an ancient 

organelle. Nature 491, 374-383 (2012). 

4 Morais, V. A. et al. PINK1 loss-of-function mutations affect mitochondrial complex I 

activity via NdufA10 ubiquinone uncoupling. Science 344, 203-207 (2014). 

5 Miwa, S. et al. Low abundance of the matrix arm of complex I in mitochondria predicts 

longevity in mice. Nat. Commun. 5, 3837 (2014). 

6 Hirst, J. Mitochondrial complex I. Annu. Rev. Biochem. 82, 551-575 (2013). 

7 Vinothkumar, K. R., Zhu, J. & Hirst, J. Architecture of mammalian respiratory complex 

I. Nature 515, 80-84 (2014). 

8 Zickermann, V. et al. Structural biology. Mechanistic insight from the crystal structure 

of mitochondrial complex I. Science 347, 44-49 (2015). 



9 Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. 

Nature xx, xx (2016). 

10 Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I 

disease biology. Cell 134, 112-123 (2008). 

11 Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of 

the entire respiratory complex I. Nature 494, 443-448 (2013). 

12 Lazarou, M., McKenzie, M., Ohtake, A., Thorburn, D. R. & Ryan, M. T. Analysis of 

the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into 

complex I. Mol. Cell Biol. 27, 4228-4237 (2007). 

13 Runswick, M. J., Fearnley, I. M., Skehel, J. M. & Walker, J. E. Presence of an acyl 

carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. 

FEBS Lett. 286, 121-124 (1991). 

14 Rodenburg, R.J. Mitochondrial complex I-linked disease. Biochim. Biophys. Acta 1857, 

938-945 (2016). 

15 Stroud, D. A. et al. COA6 is a mitochondrial complex IV assembly factor critical for 

biogenesis of mtDNA-encoded COX2. Hum. Mol. Genet. (2015). 

16 Quiros, P. M., Langer, T. & Lopez-Otin, C. New roles for mitochondrial proteases in 

health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16, 345-359 (2015). 

17 Andrews, B., Carroll, J., Ding, S., Fearnley, I. M. & Walker, J. E. Assembly factors for 

the membrane arm of human complex I. Proc Natl Acad Sci U S A 110, 18934-18939 

(2013). 

18 Sanchez-Caballero, L., Guerrero-Castillo, S. & Nijtmans, L. Unraveling the complexity 

of mitochondrial complex I assembly: A dynamic process. Biochim. Biophys. Acta 

1857, 980-990 (2016). 



19 Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of 

mammalian mitochondrial proteins. Nucleic Acids Res. (2015). 

20 Stroud, D. A., Formosa, L. E., Wijeyeratne, X. W., Nguyen, T. N. & Ryan, M. T. Gene 

knockout using transcription activator-like effector nucleases (TALENs) reveals that 

human NDUFA9 protein is essential for stabilizing the junction between membrane and 

matrix arms of complex I. J. Biol. Chem. 288, 1685-1690 (2013). 

21 Formosa, L. E. et al. Characterization of mitochondrial FOXRED1 in the assembly of 

respiratory chain complex I. Hum. Mol. Genet. 24, 2952-2965 (2015). 

22 Mimaki, M., Wang, X., McKenzie, M., Thorburn, D. R. & Ryan, M. T. Understanding 

mitochondrial complex I assembly in health and disease. Biochim. Biophys. Acta 1817, 

851-862 (2012). 

 

 

Figure 1. Analysis of complex I assembly in KO cell lines. Mitochondria were solubilized 

in triton X-100 and analysed by BN-PAGE and immunoblotting (IB). CI, complex I; SDHA 

(complex II subunit), loading control; ‡, loss of N-module; #, subcomplexes. HEK293T*, 

control for NDUFAB1KO. Galactose growth phenotypes and subunit positions indicated.   

 

Figure 2. Metabolic and proteomic analysis of representative complex I accessory 

subunit KO lines. (a) Positions of subunits in complex I9. (b) Cell lines complemented with 

cDNA encoding the targeted gene. Analysis per Fig. 1. CI+III, supercomplex; ‡, loss of N-

module; #, subcomplexes. (c) Upper panel, CI activity relative to citrate synthase (CS). n = 3 

or n = 4 biological replicates (HEK293T, NDUFA7, NDUFV3). P values are from an 

unpaired t-test; *, P<0.05; **, P<0.01. Middle, mitochondrial basal and maximal oxygen 

consumption rates (OCR). Lower panel, glycolytic capacity. ECAR, extracellular 



acidification rate. n = 3 or n = 4 biological replicates (NDUFA7, NDUFA12, NDUFV3). 

Data are mean ± S.E.M. (d) Volcano plots showing relative levels of proteins in KO cells. P 

values are from an unpaired t-test; n = 3 biological replicates; red dots, CI subunits; black 

dots, P<0.05, >1.5-fold change; light grey dots, n.s. (e) Gene ontology (GO) enrichment map 

of pathways and functions altered in respiration deficient knockouts. Example GO terms are 

grouped according to general role. 

 

Figure 3. Subunit stability correlates with structural modules. (a) Levels of CI subunits 

in KO lines. n.d., not detected. (b) Subunit levels for KOs mapped to the CI structure9. Grey, 

no data; yellow and arrow, KO subunit. Scale per (a). (c) Clusters defined in (a) mapped to 

the CI structure. Italics, core subunits; subunits not clustered removed for clarity. 

 

Figure 4. Analysis of complex I assembly factors including DMAC1 and ATP5SL. (a) 

Complex I in assembly factor KO lines as per Fig.1. (b) KO lines compared via Pearson 

correlation and hierarchical clustering. (c) Volcano plots showing proteins with altered levels 

in KOs of subunits in specific modules. Light grey dots (n.s.), >5% False Discovery Rate 

(FDR), <1.5-fold change; module N/A, module not assigned. P values from an unpaired t-test 

employing permutation based FDR statistics; n = 27 biological replicates (ND4/ND5, 

ND1/ND2 modules), n = 56 (membrane arm), n = 23 (matrix arm). (d) Complementation of 

KOs per Fig. 2b. (e) Affinity enrichment of proteins from DMAC1FLAG or ATP5SLFLAG cells. 

P values are from an unpaired single-sided t-test. n = 3 biological replicates; light grey dots, 

n.s (P-value>0.05). (f)  Radiolabelled mtDNA-encoded subunits in ATP5SLFLAG or 

DMAC1FLAG lines were immunoprecipitated with FLAG beads, analysed by SDS-PAGE and 

autoradiography. 

 



Methods 

Cell lines, gene-editing and screening  

HEK293T cells23, commonly used in complex I assembly studies15,20,21,24,25, interactome26 

and mitochondrial complexome studies24, were originally purchased from the ATCC and a 

clonal cell line was obtained after single cell sorting20 and used as the parental line for all 

gene editing and proteomic work. Knockout cell lines were validated by sequencing of 

targeted alleles for insertions and deletions (indels), immunoblotting and subsequent 

proteomic analysis. Cell lines regularly undergo testing for mycoplasma contamination using 

PlasmaTest (InvivoGen). Gene-editing was performed using TALEN27 pairs as described15,28, 

or the pSpCas9(BB)-2A-GFP (PX458) CRISPR/Cas9 construct (a gift from Feng Zhang; 

Addgene plasmid # 4813829). Briefly, in the first round, TALEN constructs were designed 

using the ZiFiT Targeter30. For genes unsuccessfully targeted in the first round, 

CRISPR/Cas9 guide RNAs were designed for a second round of gene-disruption using 

CHOPCHOP31. Successful targeting strategies and constructs can be found in Supplementary 

Table 1. Gene edited and control HEK293T cells15 were cultured in DMEM (ThermoFisher) 

supplemented with 10% (v/v) FBS and 50 µg/mL uridine. Transfection reagents used were: 

Lipofectamine 2000 and Lipofectamine LTX (ThermoFisher). During screening, glucose-free 

DMEM supplemented with 5mM galactose, 1mM sodium pyruvate, 10% (v/v) dialyzed FBS 

(ThermoFisher) and 50 µg/mL uridine was used to identify respiratory incompetent knockout 

clones. Respiratory competent knockout clones were identified by sequencing of a mixed 

PCR product covering the target region, where a loss of sequencing fidelity at the target 

indicates a candidate clone28. With the exception of the NDUFA9KO and COA6KO cell lines 

which were described previously15,20, indels for individual alleles are summarized in 

Supplementary Table 1.  



To generate NDUFAB1 knockout cells, clonal HEK293T cells were transduced with 

lentiviruses pLVX-TetOne-Puro-NDUFAB1*FLAG or pLVX-TetOne-Puro-yACP1FLAG 

(Clontech). NDUFAB1*FLAG represents the C-terminally FLAG tagged human NDUFAB1 

protein encoded by cDNA having undergone silent mutagenesis to remove the CRISPR/Cas9 

target site. yACP1FLAG indicates cDNA encoding the C-terminally FLAG tagged yeast (S. 

cerevisiae) ACP1. Transduced cells were grown in the presence of 2 µg/mL puromycin for 

72 h, and expression of NDUFAB1*FLAG or yACP1FLAG was confirmed after a further 72 h of 

treatment with 1 µg/mL doxycycline (DOX; Sigma-Aldrich) followed by SDS-PAGE and 

immunoblotting with NDUFAB1 (Abcam) and FLAG (Sigma-Aldrich) antibodies. For 

subsequent gene-editing, cells cultured in the presence of 50 ng/mL DOX were transfected 

with pSpCas9(BB)-2A-GFP-NDUFAB1 and screened as described above. 

For complementation, cDNAs encoding NDUFV3FLAG, NDUFS6FLAG, NDUFA8FLAG, 

ATP5SLFLAG and DMAC1FLAG (TMEM261FLAG) were cloned into pBABE-puro (Addgene 

#1764;32), whereas NDUFA1, NDUFA2, NDUFB7, NDUFB10, NDUFB11 and NDUFC1 

cDNAs were cloned into pBMN-Z (Addgene #1734) in place of the LacZ insert. Retroviral 

constructs were used to transduce the corresponding main clone (Supplementary Table 1), 

following which expression was selected for through growth in galactose DMEM with the 

exception of NDUFS6KO and NDUFV3KO which were selected using 2 µg/mL puromycin. 

Transduction was verified by BN-PAGE or SDS-PAGE followed by immunoblotting with 

NDUFA9 or FLAG antibodies respectively. 

Mitochondrial isolation, gel electrophoresis, immunoblotting and antibodies 

Mitochondria were isolated as previously described33. Protein concentration was estimated by 

bicinchoninic acid assay (BCA; Pierce), and aliquots of crude mitochondria stored at -80˚C 

until use. SDS-PAGE was performed using samples solubilized in LDS sample buffer and 

separated on NuPAGE Novex Bis-Tris protein gels according to manufacturer’s instructions 



(ThermoFisher). Tris-Tricine SDS-PAGE, BN-PAGE and 2D-PAGE were performed as 

described previously34-36. Carbonate and swelling experiments were performed as 

described37. Immunoblotting onto PVDF membranes was performed using a Novex Semi-

Dry Blotter (ThermoFisher) according to manufacturer’s instructions. Horseradish peroxidase 

coupled secondary antibodies and ECL chemiluminescent substrate (BioRad) were used for 

detection on a BioRad ChemiDoc XRS+ imaging system. The following primary antibodies 

were used in this study: COX2 (ThermoFisher #A-6404), COX4 (Abcam, #ab110261), 

FLAG (Sigma-Aldrich, M2 clone), MIC10 (Aviva Systems Biology, #ARP44801_P050), 

NDUFA13 (Mitosciences #MS103-SP), NDUFAB1 (Abcam, #ab96230), NDUFB11 

(Abcam, #ab183716), NDUFV1(Proteintech #11238-1-AP), NDUFS2 (Mitosciences, 

#MS114), anti-RC (Abcam, #ab110413 which contains antibodies against ATP5A, 

UQCRC2, COX1, SDHB and NDUFB8), SDHA (Abcam, #ab14715), TIMMDC1 (Sigma, # 

HPA053214), TOMM20 (Santa Cruz, #Sc11415) and UQCRC1 (ThermoFisher, 

#16D10AD9AH5), while rabbit polyclonal antibodies against NDUFA912, NDUFAF1 

(CIA30)38, NDUFAF221, NDUFAF421, NDUFB638 and HSP7020 were raised in-house.  

mRNA expression level analysis 

For analysis of mRNA expression levels, total RNA was harvested from each cell-line in 

replicate with TRIzol™ (Thermo scientific). Total RNA was purified using Direct-zol™ 

columns according to the manufacturers specifications (Zymo Research). For cDNA 

synthesis 1 µg of total RNA was processed as the T12VN-PAT assay39 adapted for 

multiplexing on the Illumina MiSeq instrument. We refer to this assay as mPAT for 

multiplexed PAT. The approach is based on a nested-PCR that sequentially incorporates the 

Illumina platform’s flow-cell specific terminal extensions onto 3’ RACE PCR amplicons. 

First, cDNA was generated using the anchor primer mPAT Reverse, next this primer and a 

pool of 50 gene-specific primers were used in 5 cycles of amplification. Each gene-specific 



primer had a universal 5’ extension (see Supplementary Table 12) for sequential addition of 

the 5’ (P5) Illumina elements. These amplicons were then purified using NucleoSpin columns 

(Macherey-Nagel), and entered into second round of amplification using the universal 

Illumina Rd1 sequencing Primer and TruSeq indexed reverse primers from Illumina. Second 

round amplification was for 14 cycles. Note, that each experimental condition was amplified 

separately in the first round with identical primers. In the second round, a different indexing 

primer was used for each experimental condition. All PCR reactions were pooled and run 

using the MiSeq Reagent Kit v2 with 300 cycles (i.e. 300 bases of sequencing) according to 

the manufacturer’s specifications. Data were analysed using established bioinformatics 

pipelines40. Figures were generated using the R framework. 

Oxygen consumption and enzymatic activity measurements  

Oxygen consumption (OCR) and extracellular acidification (ECAR) rates were measured in 

live cells using a Seahorse Bioscience XF24-3 Analyzer as described15. Briefly, 50,000 cells 

were plated per well in Seahorse Bioscience culture plates treated with 50 µg/mL poly-D-

Lysine and grown overnight in standard culture conditions. The cellular OCR and ECAR 

were analyzed in non-buffered DMEM (Seahorse Biosciences) containing 5 mM glucose, 1 

mM sodium pyruvate and 50 µg/mL uridine with the following inhibitors: 2 µM Oligomycin; 

0.5 µM carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP); 0.5 µM Rotenone; 

and 0.3 µM Antimycin A. For each assay cycle, four measurement time points of 2 min mix, 

2 min wait and 5 min measure were collected. For each cell line, 3-4 replicate wells were 

measured in multiple plates and CyQuant (ThermoFisher Scientific) was used to normalize 

measurements to cell number. Basal OCR and non-mitochondrial respiration (following 

rotenone and antimycin A injections) were calculated as a mean of the measurement points. 

Basal ECAR was calculated from the initial basal measurement cycle. To calculate proton 

leak and maximal respiration, the initial measurement following addition of oligomycin or 



FCCP was used. Enzymatic activity measurements were performed as previously described41 

in three separate subcultures of each cell line. To accommodate unequal variance, statistical 

significance was determined through an unpaired two-sample, two-sided t-test using Welch’s 

correction.  

Radiolabeling of mtDNA-encoded translation products and protein import 

Radiolabelling of mtDNA-encoded proteins was performed as previously described15,34. 

Isolated mitochondria were subjected to BN-PAGE or 2D-PAGE as described above, 

following which proteins were transferred to PVDF membranes and analysed by 

phosphorimager digital autoradiography (GE Healthcare Life Sciences). For 

immunoprecipitation of newly translated proteins, mitochondria were isolated from cells 

pulsed for 2 h and solubilized in 1% (w/v) digitonin, 20 mM Bis-Tris (pH 7.0), 50 mM NaCl, 

0.1 mM EDTA, 10% (v/v) glycerol. After a brief clarification spin, complexes were 

incubated with anti-FLAG affinity gel (SigmaAldrich), the gel washed with 0.2 % (w/v) 

digitonin, 20 mM Bis-Tris (pH 7.0), 60 mM NaCl, 0.5 mM EDTA, 10% (v/v) glycerol, and 

enriched proteins eluted with the addition of 150 µg/mL FLAG peptide (SigmaAldrich). 

Samples were TCA precipitated to remove detergent and analysed by SDS-PAGE and 

phosphorimaging as above.  

For protein import, NDUFA12, NDUFA7 and NDUFV3 cDNA were cloned into the pGEM-

4Z plasmid (Promega). mRNA was transcribed using the mMESSAGE mMACHINE SP6 

transcription kit (ThermoFisher Scientific) according to the manufacturer’s instructions.  

Radiolabelled proteins were translated in the presence of [35S]-methionine/cysteine using a 

Rabbit Reticulocyte Lysate System (Promega). Translated proteins were incubated with 

isolated mitochondria at 37˚C as previously described12, following which mitochondria were 

analysed by SDS-PAGE or BN-PAGE as described above. 



Quantitative mass-spectrometry using mitochondrial and whole-cell starting material, 

and data analysis 

For NDUFV3KO, NDUFS6KO, NDUFA2KO, NDUFA8KO, NDUFA1KO, NDUFS5KO, 

NDUFC1KO, NDUFB4KO, NDUFB7KO, NDUFB10KO, NDUFB11KO mass-spectrometry was 

performed from SILAC labelled whole-cell starting material as described by Kulak et al.42 

with modifications. Briefly, cells cultured in “heavy” 13C6
15N4-arginine, 13C6

15N2-lysine-

containing or “light” SILAC DMEM15 were harvested, washed in PBS and protein content 

determined by BCA assay. Measurements were performed in batches of 3-4 knockout cell 

lines in triplicate with a label switch. Each batch utilized a single pool of clonal HEK293T 

cells (1 sample grown in “heavy” DMEM, and 2 independent samples grown in “light” 

DMEM) and knockout cell lines were grown with the complementary label orientation (1 in 

“light” DMEM, and 2 in “heavy” DMEM). Equal amounts of “heavy” and “light” (typically 

250 µg) control HEK293T and knockout cells were mixed, and cells were solubilized in 1% 

w/v sodium deoxycholate, 100 mM Tris-HCl (pH 8.1). Lysates were sonicated for 30 min at 

60˚C in a sonicator waterbath, followed by denaturation and alkylation through the addition 

of 5 mM Tris(2-carboxyethy)phosphine (TCEP), 20 mM chloroacetamide and incubation for 

5 min at 99˚C with vortexing. Samples were digested with trypsin overnight at 37˚C. 

Detergent was removed by ethyl acetate extraction in the presence of 2% formic acid (FA), 

following which the aqueous phase was concentrated by vacuum centrifugation. Peptides 

were reconstituted in 0.5% FA and loaded onto pre-equilibrated small cation exchange 

(Empore Cation Exchange-SR, Supelco Analytical) stage-tips made in-house. Tips were 

washed with 6 load volumes of 20% acetonitrile (ACN), 0.5% FA and eluted in 5 sequential 

fractions of increasing amounts (45-300 mM) of ammonium acetate, 20% ACN, 0.5% FA. A 

sixth elution was collected using 5% ammonium hydroxide, 80% ACN following which 

fractions were concentrated, desalted and reconstituted as previously described15.  



Peptides were reconstituted in 0.1% trifluoroacetic acid (TFA) and 2% ACN and fractions 

analysed sequentially by online nano-HPLC/electrospray ionization-MS/MS on a Q Exactive 

Plus connected to an Ultimate 3000 HPLC (Thermo-Fisher Scientific). Peptides were first 

loaded onto a trap column (Acclaim C18 PepMap nano Trap x 2 cm, 100 µm I.D, 5 µm 

particle size and 300 Å pore size; ThermoFisher Scientific) at 15 µL/min for 3 min before 

switching the pre-column in line with the analytical column (Acclaim RSLC C18 PepMap 

Acclaim RSLC nanocolumn 75 µm x 50 cm, PepMap100 C18, 3 µm particle size 100 Å pore 

size; ThermoFisher Scientific). The separation of peptides was performed at 250 nL/min 

using a non-linear ACN gradient of buffer A (0.1% FA, 2% ACN) and buffer B (0.1% FA, 

80% ACN), starting at 2.5% buffer B to 35.4% followed by ramp to 99% over 120 minutes 

(runs had a total acquisition time of 155 min to accommodate void and equilibration 

volumes). Data were collected in positive mode using Data Dependent Acquisition using m/z 

375 - 1800 as MS scan range, HCD for MS/MS of the 12 most intense ions with z ≥ 2. Other 

instrument parameters were: MS1 scan at 70,000 resolution (at 200 m/z), MS maximum 

injection time 50 ms, AGC target 3E6, Normalized collision energy was at 27% energy, 

Isolation window of 1.8 Da, MS/MS resolution 17,500, MS/MS AGC target of 1E5, MS/MS 

maximum injection time 100 ms, minimum intensity was set at 1E3 and dynamic exclusion 

was set to 15 sec.  

For the remaining knockouts we utilized isolated mitochondria as starting material. Cells 

were cultured in SILAC DMEM as above and mitochondrial isolations performed in batches 

of 1-6 knockout cell lines in triplicate. Each batch contained a single set of clonal HEK293T 

mitochondria (2 independent isolations from “heavy” and 1 from “light” cells), with 

knockout mitochondria having the complementary label orientation (2 independent isolations 

from “light” DMEM and 1 from “heavy” cells). Mitochondria were isolated from cell pellets 

stored at -80˚C as previously described 43, but with modifications. Cells were resuspended in 



20 mM HEPES-KOH (pH 7.6), 220 mM mannitol, 60 mM sucrose, 1 mM EDTA, 1 mM 

PMSF and homogenized as described above. The homogenate was centrifuged at 800 x g for 

5 minutes at 4˚C, and the supernatant again centrifuged at 10,000 x g for 10 minutes at 4˚C. 

Crude mitochondria were resuspended in the above buffer and the two differential 

centrifugation steps repeated. The resuspended pellet was then layered onto a sucrose cushion 

consisting of 10 mM HEPES-KOH (pH 7.6), 500 mM sucrose, 1 mM EDTA. Samples were 

centrifuged at 10,000 x g for 10 minutes at 4˚C, following which the protein concentration 

was estimated by BCA assay. Equal amounts of “heavy” and “light” (typically 20 µg) control 

HEK293T and knockout mitochondria were mixed as described above, collected by 

centrifugation at 18,000 x g and solubilized in 8 M urea, 50 mM ammonium bicarbonate. 

Proteins were acetone precipitated, reduced and alkylated and desalted as previously 

described15. Peptides reconstituted in 0.1% TFA and 2% ACN were analysed on a Q Exactive 

Plus, or a LTQ-Orbitrap Elite Instrument. Instrument and method parameters for Q Exactive 

Plus were as described above however utilized a shorter gradient (90 min separation, 120 min 

total acquisition). For the Orbitrap Elite, instrument and method parameters were as 

previously described15. A single technical re-injection was collected for all mitochondrial 

samples.  

All raw file names included identifiers for the batch, instrument and gradient used, knockout 

cell line being studied, and applicable label orientation. Raw files were analysed using the 

MaxQuant platform44 version 1.5.4.1 searching against the Uniprot human database 

containing reviewed, canonical and isoform variants in FASTA format (June 2015) and a 

database containing common contaminants by the Andromeda search engine45. Default 

search parameters for a Arg10 and Lys8 labelled experiment were used with modifications. 

Briefly, cysteine carbamidomethylation was used as a fixed modification, and N-terminal 

acetylation and methionine oxidation were used as variable modifications. False discovery 



rates of 1% for proteins and peptides were applied by searching a reverse database, and “Re-

quantify” and “Match from and to”, “Match between runs” options were enabled with a 

match time window of 2 minutes. Experimental groups based on data gathered using different 

instrumentation and/or acquisition parameters were given odd numbered fractions to avoid 

falsely matched identifications, whereas fractionated whole-cell samples were given 

sequential fraction numbers. Unique and razor peptides with a minimum ratio count of 2 were 

used for quantification. 

Using the Perseus platform (version 1.5.4.1), identifications were matched to the 

MitoCarta2.0 database19 using Ensembl ENSG id and gene name identifiers. Identifications 

labeled by MaxQuant as “Only identified by site”, “Reverse” and “Potential Contaminant” 

were removed. Proteins having < 3 valid values in a single experimental group were 

removed. For mitochondrial samples, we found the correlation of log2-ratio data from 

biological replicates in the same experimental group to be moderate at best and as low as 0.3 

in some cases. We surmised the main cause of this to be batch and labelling effect, the former 

due to differences in mitochondrial isolations between batches and latter due to one (of three) 

replicates within each experimental group always being subjected to a label switch. To 

account for these and potentially other factors, we adopted an approach that borrows 

principles from RUV-246 and SVA47 methods for removing unwanted variations, with 

modifications in the algorithm for choosing the control proteins (i.e. those not found in 

MitoCarta 2.019) and moderating the amount of adjustment for genes with small sample size 

due to missing values. Adjustments were performed in the R framework, following which the 

adjusted ratios were imported back into Perseus. The log2 ratio values for proteins in 

replicates were normally distributed and had equal variances. The mean log2-transformed 

ratios for each experimental group were calculated along with their standard deviation and P-

value based on single sample two-sided t-test15. This statistical approach was consistent with 



published quantitative SILAC analyses employing similar instrumentation and 

methods15,48,49. Groups having < 2 valid values were converted to “NaN” (not a number). A 

quality matrix was generated based on the standard deviation, and corresponding values 

having a standard deviation greater than 1 converted to “NaN”. This threshold was 

determined empirically to remove outliers from the main distribution of standard deviations 

across all samples. These data can be found in Supplementary Data Table 5.  

Figs 3b and Extended Data Fig. 6a, 8c and 9d were generated from a matrix containing log2-

transformed median SILAC ratios having a standard deviation <1 for complex I subunits 

(Supplementary Table 7) and data were mapped to homologous subunits in PDB XXXX9. 

For Fig. 3a, hierarchical clustering on rows (proteins) was performed using Pearson distance 

and average linkage. Data were pre-processed using k-means (clusters = 300). Images were 

generated using the PyMOL Molecular Graphics System, Version 1.7.2.1 (Schrödinger, 

LLC). Log2 SILAC ratios for some proteins in their corresponding knockout cell line had 

very low (generally >4-fold reduction) ratios, whereas others were reported “NaN”. This 

could be either due to the “Re-quantify” option being turned on for the MaxQuant search, 

which results in translation of peak shapes from an identified isotope pattern being translated 

to its unidentified label partner, or indels in some lines generating a non-functional (but still 

translated) protein as we have seen previously15.  

For the identification of proteins dysregulated between knockouts of discrete modules (Fig. 

4c; Supplementary Tables 8 and 9), triplicate log2–transformed SILAC ratios from 

Supplementary Table 5 were assigned to one of two groups based on the knockout being 

associated with the indicated module. Groups tested had comparable variance, and a modified 

Welch’s two-sample t-test with permutation based FDR statistics50,51 was used to determine 

significance. Parameters for the test were: 70% minimum valid values, 250 permutations and 

significance being an FDR of <0.05. 



For the gene ontology enrichment analysis in Fig. 2c, proteins with a P-value <0.05 and with 

>1.5 fold change up or down were submitted to the DAVID online tool 

(david.abcc.ncifcrf.gov/home.jsp) for enriched biological processes (GOTERM_BP_FAT) 

and molecular function (GOTERM_MF_FAT). Functional annotation charts were exported 

and visualised using Cytoscape (version 3.4.0) and the Enrichment Map app52 (version 2.1.0; 

P<0.005). Contents of enriched terms indicated in Fig. 2c are detailed in Extended Data Fig. 

5d. 

Affinity enrichment mass-spectrometry and data analysis  

Affinity-enrichment experiments in Fig. 4e, Extended Data Figs 3d and 4d, and 

Supplementary Tables 2-4 and 10-11 were performed from HEK293T and knockout cells 

complemented with the FLAG-tagged protein cultured in “heavy” or “light” SILAC DMEM 

as previously described15. Mass-spectrometry was performed on a Q Exactive Plus as above 

but using a shorter gradient (25 min separation, 60 min total acquisition). For data analysis, 

raw files were analyzed using the MaxQuant platform as above using default search 

parameters for a Arg10 and Lys8 labelled experiment, with modifications. Briefly, cysteine 

carbamidomethylation was used as a fixed modification, and N-terminal acetylation and 

methionine oxidation were used as variable modifications. False discovery rates of 1% for 

proteins and peptides were applied by searching a reverse database, and “Re-quantify” and 

“Match from and to”, “Match between runs” options were enabled with a match time window 

of 2 minutes. Unique and razor peptides with a minimum ratio count of 1 were used for 

quantification. Data analysis was performed using the Perseus framework. Identifications 

were matched to MitoCarta2.0 dataset19 as above. Only proteins with a sequence coverage of 

2 or more unique peptides were included in further analysis. Normalized SILAC ratios were 

inverted to achieve the orientation FLAG-tagged/HEK293T and proteins not present in > 2/3 

replicates were removed. Log10-transformed transformed values had a normal distribution 



and comparable variance. For affinity-enrichment experiments, statistical method, sample 

size and analysis approaches were chosen based on published quantitative affinity-

enrichment analyses employing similar instrumentation and methods15,21,53,54. P-values were 

calculated by a single (FLAG-tagged cell line enriched) sided t-test and the negative 

logarithmic P-value plotted against the mean of the three replicates. 

Miscellaneous molecular biology 

cDNA inserts were obtained from an in-house cDNA library generated from our clonal 

HEK293T line. Briefly, RNA was isolated using TRIzol Reagent (ThermoFisher) according 

to manufacturer’s instructions. The Superscript III first strand synthesis kit (ThermoFisher 

Scientific) was used to generate cDNA primed with either Oligo(dT) or random hexamers. 

Inserts were amplified from the library using Q5 High Fidelity DNA Polymerase (NEB) and 

Gibson assembled into the relevant plasmid (see above) using the NEBuilder HiFi DNA 

Assembly Master Mix (NEB) according to manufacturer’s instructions. Sanger sequencing 

was performed from PCR product or plasmid template DNA. DNA sequence assembly and 

alignment to sequencing reads was performed using SnapGene (GSL Biotech) and Geneious 

(Biomatters). 

Immunofluorescence microscopy was performed as previously described55 using primary 

antibodies (FLAG or TOMM20) at 1:500 dilutions. Primary antibodies were labelled with 

anti-mouse conjugated Alexa Fluor 488 and anti-rabbit conjugated Alexa Fluor 568 

secondary antibodies (Molecular Probes). Hoechst (1µg/mL) was used to stain nuclei. Cells 

were visualized using either a Leica TCS SP8 equipped with HyD detectors. Images were 

processed using Image J56. All figures were prepared using Adobe Photoshop and Illustrator 

(CC2015.5). 

Data Reporting 



No statistical methods were used to predetermine sample size. The experiments were not 

randomized. The investigators were not blinded to allocation during experiments and 

outcome assessment.  
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Extended Data Figures 

 

Extended Data Figure 1. Assembly analysis of the complex I/III/IV supercomplex (SC) 

in knockout cell lines. Mitochondria were solubilized in digitonin and complexes separated 

by BN-PAGE followed by immunoblotting (IB) using the indicated antibodies. An antibody 

against complex V (CV) subunit ATP5A was used as loading control. #, subcomplexes; *, 

non-specific. 

 

Extended Data Figure 2. Steady state levels of respiratory chain complexes I-IV and 

supercomplex forms in the 28 complex I accessory subunit knockout lines generated in 

this study. NDUFA9KO has been analysed previously20, whereas the NDUFAB1KO is 

described in Extended Data Fig. 3. Mitochondria were solubilized in triton X-100 (TX100) or 



digitonin (DIG) and analysed by BN-PAGE and immunoblotting with antibodies against 

NDUFA9 (complex I), SDHA (complex II), UQCRC1 (complex III) and COX4 (complex 

IV). In TX100 samples, some Complex III-IV supercomplex is retained.  #, secondary clone 

later identified be an incomplete knockout. 

 

Extended Data Figure 3. Generation and analysis of NDUFAB1KO cell lines. (a) Scheme 

detailing knockout strategy of genomic NDUFAB1 using doxycycline (DOX) -inducible 

expression of CRISPR/Cas9-resistant NDUFAB1 (NDUFAB1*FLAG) or yACP1FLAG. (b) 

NDUFAB1 knockouts complemented with NDUFAB1FLAG (NDUFAB1*-2) cells were 

cultured in media lacking DOX for the indicated times. Isolated mitochondria were analysed 

by BN-PAGE (triton X-100) or SDS-PAGE and immunoblotting (IB) with the indicated 

antibodies. (c) Brightfield images of cells grown +/- DOX, or + DOX in glucose or galactose 

cell culture medium. Scale bar, 25 µm. (d) SILAC labelled mitochondria from DOX-treated 

HEK293T or NDUFAB1FLAG (NDUFAB1*-2) cells were solubilized in triton X-100 and 

incubated with anti-FLAG affinity gel. Elutions were mixed and analysed by LC-MS as 

described in the methods. Proteins enriched with NDUFAB1 include complex I subunits and 

LYRM proteins. P values are from an unpaired single-sided t-test. n = 3 biological replicates; 

light grey dots, P-value>0.05. (e) Mitochondria isolated from NDUFAB1 knockouts 

complemented with yACP1FLAG or NDUFAB1FLAG were solubilized in triton X-100 and 

analysed by BN-PAGE and immunoblotting with the indicated antibodies. 

 

Extended Data Figure 4. Analysis of N-module accessory subunits. (a) Mitochondria were 

isolated from cell lines, solubilized in triton X-100 and analysed by BN-PAGE and 

immunoblotting for N-module subunit NDUFV1 or non N-module subunit NDUFA9. ‡, 

complex lacking N-module; N*, subcomplex containing N-module. SDHA was used as a 



loading control. (b) Mitochondria were solubilized in digitonin and analysed by BN-PAGE 

and immunoblotting for NDUFAF2. †, NDUFAF2 associated complex I. (c) [35S]-methionine 

labelled proteins were imported into the indicated mitochondria, solubilised in digitonin and 

analysed by BN-PAGE and autoradiography. 10% of the input lysate was analysed by SDS-

PAGE and autoradiography. CISC, complex I supercomplex *, non-specific band. (d) 

Mitochondria isolated from NDUFV3KO cells complemented with NDUFV3FLAG were 

solubilized in triton X-100 or digitonin and complexes bound to anti-FLAG affinity gel. 

Eluted proteins were analysed by LC-MS as described in the supplementary materials. P 

values are from an unpaired single-sided t-test. n = 3 biological replicates; light grey dots, n.s. 

P-value>0.05. 

 

Extended Data Figure 5. Proteomic analysis of KO cell lines. (a) Relative levels of 

proteins in representative accessory subunit KO cell lines, clustered according to Euclidean 

distance. Column order is as per Fig. 2b. The inset shows complex I subunit specific clusters. 

(b) Volcano plot depicting proteins regulated in representative accessory subunit KO cell 

lines harbouring respiration defects (NDUFA2KO, NDUFA8KO, NDUFS5KO, NDUFC1KO, 

NDUFB10KO, NDUFB11KO, NDUFB7KO). Proteins found to be regulated in a cell line with a 

severe complex IV defect15 are shaded light blue (down) and green (up), suggesting their 

response is due to general defects in respiration. Inset, volcano plot depicting the relative 

level of proteins in a complex IV knockout cell line. P values are from an unpaired t-test; n = 

8 independent means comprised each of 3 biological replicates (main panel), n = 3 (inset) 

biological replicates; light grey dots, P-value>0.05, <1.5-fold change. Data is reproduced in 

Supplementary Table 6. (c) Proteins affected >2-fold in levels in respiration-deficient subunit 

KO cell lines. Colour key according to (b). Bold, proteins listed in MitoCarta2.0. (d) Proteins 

associated with GO terms and groups outlined in Fig. 2d. 



 

Extended Data Figure 6. Mapping of complex I subunit levels onto the structure. (a) 

Subunit levels in complex I accessory subunit KO lines were mapped to homologous subunits 

in the bovine single-particle electron cryo-microscopy structure of complex I9 as in Fig. 3b. 

Both sides of complex I are shown. Median ratio data used in the preparation of this figure 

can be found in Supplementary Table 7. (b) Opposite side view of Fig. 3c. n.d., dark grey 

shading on the structures, subunits not quantified. Subunits not clustered to modules removed 

for clarity. 

 

Extended Data Figure 7. mRNA expression levels in selected accessory subunit 

knockout lines. Transcripts were measured for nuclear-encoded complex I subunit genes 

along with control genes from complex II (SDHA), complex III (UQCRC1, UQCRFS1), 

complex IV (COX4L1, NDUFA4), complex V (ATP5B, ATP5H) and mt-ribosome (MRPS2, 

MRPL46) in KO lines (performed in duplicate).  

 

Extended Data Figure 8. Analysis of assembly factor knockout lines. (a) Mitochondrial 

proteins from the indicated cell lines were separated by SDS-PAGE and subjected to western 

blot analysis. (b) Volcano plots showing fold changes vs P-values for the mitochondrial 

proteins in assembly factor knockout cell lines. P values are from an unpaired t-test; n = 3 

biological replicates; coloured dots are according to the key at bottom right; n.s., P=>0.05. 

(c) Subunit levels mapped to homologous subunits in the bovine single-particle electron cryo-

microscopy structure as for Fig. 3b. n.d., dark grey shading on the structures, subunits not 

quantified. Both sides of complex I are shown. 

 



Extended Data Figure 9. Characterization of DMAC1 and ATP5SL. (a) ATP5SLKO 

mitochondria were solubilized in triton X-100 or digitonin and analysed by BN-PAGE and 

immunoblotting with the indicated antibodies. (b) As for (a) using DMAC1KO mitochondria. 

(c) Volcano plots showing fold changes vs P-values for the mitochondrial proteins in 

ATP5SL and DMAC1 KO cell lines. P values are from an unpaired t-test; n = 3 biological 

replicates; coloured dots represent complex I subunits depicted in the key; n.s., P>0.05. (d) 

Subunit levels mapped to homologous subunits in the bovine single-particle electron cryo-

microscopy structure as for Fig. 3b. n.d., dark grey shading on the structures, not quantified. 

Both sides of complex I are shown. (e) Mitochondria isolated from DMAC1 cells 

complemented with DMAC1FLAG were resuspended in isotonic buffer, hypoosmotic swelling 

buffer, or triton X-100 (TX-100) followed by proteinase K (PK) incubation where indicated. 

Alternately, mitochondria were treated with 100 mM Na2CO3 and membrane-integral (pellet) 

and soluble or peripherally attached (supernatant, SN) proteins were separated by 

ultracentrifugation. Samples were analysed by SDS-PAGE and immunoblotting for 

TOMM20 (outer membrane); MIC10 (integral inner membrane protein exposed to 

intermembrane space); NDUFAF1 (matrix, soluble); NDUFS2 (matrix, peripheral). (f) 

DMAC1KO cells complemented with DMAC1FLAG were analysed by immunofluorescence 

microscopy with the indicated antibodies. TOMM20, mitochondrial protein. Scale bar, 20 

µm. Representative result from 3 independent experiments. (g) Cells were pulsed with [35S]-

methionine for 1 h and chased for the indicated times as described in the supplementary 

materials. Isolated mitochondria were solubilized in triton X-100 and analysed by 2D-PAGE 

and autoradiography. à, 600 kDa complex; #, subcomplex containing ND1 and ND2.  

 

  



Extended Data Table 1: Pathogenic mutations in complex I accessory subunit genes in 
patients with mitochondrial disease 

 

 
aThree accessory subunits in which knockouts cause mild complex I assembly defects have 
had patients reported with pathogenic mutations; in almost all cases the mutations are 
expected to cause two null alleles, suggesting that almost complete loss of function of these 
subunits may be required to cause human disease. Eight accessory subunits in which 
knockouts cause severe complex I assembly defects have had patients reported with 
pathogenic mutations; in almost all cases the patients have at least one missense mutation or 
some evidence that some residual subunit protein is present. This suggests that complete loss 
of function of these subunits may not be compatible with human life. Interpretation of the data 
for the NDUFB11 and NDUFA1 subunits is complicated by their being encoded on the X 
chromosome. Males thus have only one copy of these genes while females have 2 copies with 
some cells expressing the wildtype and some expressing the mutant allele. All reported 
NDUFB11 patients are female and all had stop codon or frameshift mutations expected to 
cause null alleles. Such patients often have skewed X-inactivation, with most cells expressing 
the wildtype allele, which may compensate partly for the severity of the defect. An additional 
subunit, NDUFA5, has not had patients with mutations identified but knockout of the 
mutation in mice results in embryonic lethality. This is consistent with the suggestion that 
human foetuses may not be viable if they have null-type mutations in both alleles of genes 
encoding accessory subunits linked to severe assembly defects. #, Online Mendelian 
Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns 
Hopkins University (Baltimore, MD) 01/20/2016 World Wide Web URL: http://omim.org 
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