20 research outputs found

    Building an immune-mediated coagulopathy consensus: early recognition and evaluation to enhance post-surgical patient safety

    Get PDF
    Topical hemostats, fibrin sealants, and surgical adhesives are regularly used in a variety of surgical procedures involving multiple disciplines. Generally, these adjuncts to surgical hemostasis are valuable means for improving wound visualization, reducing blood loss or adding tissue adherence; however, some of these agents are responsible for under-recognized adverse reactions and outcomes. Bovine thrombin, for example, is a topical hemostat with a long history of clinical application that is widely used alone or in combination with other hemostatic agents. Hematologists and coagulation experts are aware that these agents can lead to development of an immune-mediated coagulopathy (IMC). A paucity of data on the incidence of IMC contributes to under-recognition and leaves many surgeons unaware that this clinical entity, originating from normal immune responses to foreign antigen exposure, requires enhanced post-operative vigilance and judicious clinical judgment to achieve best outcomes

    Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas

    Get PDF
    Abstract Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans

    Unravelling the evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor gene families in Bilaterians: insights from Anopheles Mosquitoes

    Get PDF
    Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anophelesmosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa(2+)-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.Foundation for Science and Technology, Portugal (FCT) [PTDC/BIA-BCM/114395/2009]; European Regional Development Fund (ERDF) COMPETE - Operational Competitiveness Programme; Portuguese funds through FCT Foundation for Science and Technology [PEst-C/MAR/LA0015/2013, UID/Multi/04326/2013, PEst-OE/SAU/LA0018/2013]; FCT [SFRH/BPD/89811/2012, SFRH/BPD/80447/2011, SFRH/BPD/66742/2009]; auxiliary research contract FCT Pluriannual funds [PEst-C/MAR/LA0015/2013, UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio

    Training Images from Process-Imitating Methods : An Application to the Lower Namoi Aquifer, Murray-Darling Basin, Australia

    No full text
    The lack of a suitable training image is one of the main limitations of the application of multiple-point statistics (MPS) for the characterization of heterogeneity in real case studies. Process-imitating facies modeling techniques can potentially provide training images. However, the parameterization of these process-imitating techniques is not straightforward. Moreover, reproducing the resulting heterogeneous patterns with standard MPS can be challenging. Here the statistical properties of the paleoclimatic data set are used to select the best parameter sets for the process-imitating methods. The data set is composed of 278 lithological logs drilled in the lower Namoi catchment, New South Wales, Australia. A good understanding of the hydrogeological connectivity of this aquifer is needed to tackle groundwater management issues. The spatial variability of the facies within the lithological logs and calculated models is measured using fractal dimension, transition probability, and vertical facies proportion. To accommodate the vertical proportions trend of the data set, four different training images are simulated. The grain size is simulated alongside the lithological codes and used as an auxiliary variable in the direct sampling implementation of MPS. In this way, one can obtain conditional MPS simulations that preserve the quality and the realism of the training images simulated with the process-imitating method. The main outcome of this study is the possibility of obtaining MPS simulations that respect the statistical properties observed in the real data set and honor the observed conditioning data, while preserving the complex heterogeneity generated by the process-imitating method. In addition, it is demonstrated that an equilibrium of good fit among all the statistical properties of the data set should be considered when selecting a suitable set of parameters for the process-imitating simulations
    corecore