886 research outputs found
The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study
International audienceBromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height) model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at northern hemisphere mid-latitudes of only ?55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ?45% of the model estimated column ozone loss at northern hemisphere mid-latitudes. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called ?-factor, is about 73 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in ?. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean ?-factor
Historic temperature observations on Nordaustlandet, north-east Svalbard
Long-term meteorological data for the Arctic are sparse. One of the longest quasi-continuous temperature time series in the High Arctic is the extended Svalbard Airport series, providing daily temperature data from 1898 until the present. Here, I derive an adjustment to historic temperature observations on the island of Nordaustlandet, north-east Svalbard, in order to link these to the extended Svalbard Airport series. This includes the Haudegen observations at Rijpfjorden during 1944/45 and a previously unrecognized data set obtained by the Norwegian hunters and trappers Gunnar Knoph and Henry Rudi during their wintering at Rijpfjorden in 1934/35. The adjustment is based on data from an automatic weather station at Rijpfjorden during 2014–16 and verified with other independent historic temperature observations on Nordaustlandet. An analysis of the Haudegen radiosonde data indicates that the surface temperature observations at Rijpfjorden are generally well correlated with the free tropospheric temperatures at 850 hPa, but occasionally show the occurrence of boundary-layer inversions during winter, where local temperatures fall substantially below what is expected from the regression. The adjusted historic observations from Nordaustlandet can, therefore, be used to fill remaining gaps in the extended Svalbard Airport series
The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study
Bromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height) model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at Northern Hemisphere mid-latitudes of only ≈55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ≈45% of the model estimated column ozone loss at Northern Hemisphere mid-latitudes. However, since a large fraction of the bromine induced ozone loss is due to the combined BrO/ClO catalytic cycle, the effect of bromine would have been smaller in the absence of anthropogenic chlorine emissions. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called α-factor, is 64 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in α. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean α-factor
Estimating the contribution of bromoform to stratospheric bromine and its relation to dehydration in the tropical tropopause layer
International audienceThe contribution of bromoform to the stratospheric bromine loading is estimated using the one-dimensional tropical mean model of Folkins and Martin (2005), which is constrained by observed mean profiles of temperature and humidity. In order to reach the stratosphere, bromoform needs to be lifted by deep convection into the tropical tropopause layer (TTL), above the level of zero radiative heating. The contribution of bromoform to stratospheric bromine then depends critically on the rate of removal of the degradation products of bromoform (collectively called Bry here) from the TTL, which is believed to be due to scavenging by falling ice. This relates the transport of short-lived bromine species into the stratosphere to processes of dehydration in the TTL. In the extreme case of dehydration occurring only through overshooting deep convection, the loss of Bry from the TTL may be negligible and consequently bromoform will fully contribute with its boundary layer mixing ratio to the stratospheric bromine loading, i.e. with 3 pptv for an assumed 1 pptv of bromoform in the boundary layer. For the other extreme that Bry is removed from the TTL almost instantaneously, the model calculations predict a contribution of about 0.5 pptv for the assumed 1 pptv of boundary layer bromoform. While this gives some constraints on the contribution of bromoform to stratospheric bromine, a key uncertainty in estimating the contribution of short-lived bromine source gases to the stratospheric bromine loading is the mechanism and rate of removal of Bry within the TTL
Energetic electron precipitation and their atmospheric effect
Energetic particle precipitation induces ionization of the atmosphere which initiates a chain of reaction cycles affecting atmospheric composition and dynamics potentially down to surface weather systems. Ionization rates are retrieved based on yield functions or pre-calculated monoenergetic electron flux and energy spectra of precipitated energetic particles. Usually, information about energy spectra is obtained from satellites, balloons, and various ground-based observations. In all cases, some assumptions about spectral distribution for the entire energy range have to be made. As ionization rates are widely used in chemistry-climate models to estimate the atmospheric response to particle forcing, evaluation of the energy spectra is a key task in the solar-terrestrial studies. In this paper, it is shown that possible uncertainties of the ionization rates retrieval based on different spectral functions can lead to large disagreements in the ionization rates, with implications for the modelled response of atmospheric composition and dynamics to electron precipitation
Rapid meridional transport of tropical airmasses to the Arctic during the major stratospheric warming in January 2003
International audienceWe present observations of unusually high values of ozone and N2O in the middle stratosphere that were observed by the airborne submillimeter radiometer ASUR in the Arctic. The observations took place in the meteorological situation of a major stratospheric warming that occurred in mid-January 2003 and was dominated by a wave 2 event. On 23 January 2003 the observed N2O and O3 mixing ratios around 69° N in the middle stratosphere reached maximum values of ~190 ppb and ~10 ppm, respectively. The similarities of these N2O profiles in a potential temperature range between 800 and 1200 K with N2O observations around 20° N on 1 March 2003 by the same instrument suggest that the observed Arctic airmasses were transported from the tropics quasi-isentropically. This is confirmed by 5-day back trajectory calculations which indicate that the airmasses between about 800 and 1000 K had been located around 20° N 3?5 days prior to the measurement in the Arctic. Calculations with a linearized ozone chemistry model along calculated as well as idealized trajectories, initialized with the low-latitude ASUR ozone measurements, give reasonable agreement with the Arctic ozone measurement by ASUR. PV distributions suggest that these airmasses did not stay confined in the Arctic region which makes it unlikely that this dynamical situation lead to the formation of dynamically caused pockets of low ozone
INCREASE: An updated model suite to study the INfluence of Cosmic Rays on Exoplanetary AtmoSpherEs
Exoplanets are as diverse as they are fascinating. They vary from ultrahot Jupiter-like low-density planets to presumed gas-ice-rock mixture worlds such as GJ 1214b or worlds as LHS 1140b, which features twice the Earth\u27s bulk density. Regarding the great diversity of exoplanetary atmospheres, much remains to be explored. For a few selected objects such as GJ1214b, Proxima Centauri b, and the TRAPPIST-1 planets, the first observations of their atmospheres have already been achieved or are expected in the near future with the launch of the James Webb Space Telescope envisaged in October 2021. However, in order to interpret these observations, model studies of planetary atmospheres that account for various processes—such as atmospheric escape, outgassing, climate, photochemistry, as well as the physics of air showers and the transport of stellar energetic particles and galactic cosmic rays through the stellar astrospheres and planetary magnetic fields—are necessary. Here, we present our model suite INCREASE, a planned extension of the model suite discussed in Herbst, Grenfell, et al. (2019)
- …