2,095 research outputs found

    Volume flexible multi items inventory system with imprecise environment

    Get PDF
    This paper addresses a multi items volume flexible system for time dependent decaying items with the concept of machine breakdown and imprecise environment. In this study, partially backlogged shortages have been discussed. All the costs are fuzzified with signed distance method. Numerical examples are given to illustrate the theoretical results and sensitivity analysis is given to validate the results for various parameters

    Supply chain production model with preservation technology under fuzzy environment

    Get PDF
    In this paper, an attempt is made to characterize the preservation technology for deteriorating items to reduce the deterioration rate. This model assumes a single producer and single supplier and formulates a production model with a time varying rate of deterioration rate. Here production and demand are treated as a fuzzy variables and total cost is minimized for both the crisp and fuzzy model. Shortage is allowed on the supplier’s part, which is partially backlogged. A solution procedure is presented to determine an optimal replenishment cycle and total cost per unit time, which is a convex function of preservation technology cost. Results have been validated with relevant example. In a way, the proposed model provides a unique theory to reduce the deterioration rate for the production model

    An Integrated Model with Variable Production and Demand Rate under Inflation

    Get PDF
    AbstractIn this article, an integrated model is developed in which a manufacturer purchases raw materials from a supplier, and then produces finished products/goods, after that delivers them to a buyer. In the intended model production rate is assumed as a function of demand rate and customer demand rate is time dependent. To make the model more realistic the effect of inflation and time value of money is also taken into consideration. The concept of the model is illustrated through the numerical example and sensitivity analysis with respect to the system parameters is also performed

    An EPQ model with trapezoidal demand under volume flexibility

    Get PDF
    In this paper, we explored an economic production quantity model (EPQ) model for finite production rate and deteriorating items with time-dependent trapezoidal demand. The objective of the model under study is to determine the optimal production run-time as well as the number of production cycle in order to maximize the profit. Numerical example is also given to illustrate the model and sensitivity analyses regarding various parameters are performed to study their effects on the optimal policy

    Two-warehouse Inventory Model with Multivariate Demand and K-release Rule

    Get PDF
    AbstractIn this paper, we’ve projected a two-warehouse inventory model for deteriorating things beneath the impact of inflation and continuance of cash, wherever demand follows a rare combination of the linear time variable and on-hand inventory level. In one in the entire warehouse (OW), time-varying linear deterioration was thought-about and within the different (RW) weibull distributed deterioration was studied. Here, shortages were allowed and part backlogged. The stock is transferred from the RW to the OW following a bulk unharness rule. The target here is to seek out the optimum amount to that ought to be ordered and also the optimum variety of cycles during which the number from RW should be transferred to OW to maximize world wide web profit per unit time. The model has additionally been exemplified with the many numerical examples. The results have additionally been understood diagrammatically

    Effect of Binary Fuel Blends on Compression Ignition Engine Characteristics: A Review

    Get PDF
    Diversified research in alternate sources arises become necessity due to higher consumption of fossil fuels along with their adverse impacts on the environment, even to the point of complete elimination of diesel from compression-ignition (CI) engines. Binary fuel blend (a blend of low and high viscous fuel) is one of the best environmentally friendly alternative in CI engines. Blending of methyl ester with edible and nonedible oils in different volumetric ratios has the potency to give a stable mixture and that can be used as a fuel in diesel engines. The main motive for the blending of two fuels is that the inferior properties of one biofuel remunerate from improved properties of the other fuel considerably improves the physicochemical properties of the blend. The present study provides comprehensive information on the emission and performance characteristics of binary biodiesel-oil fuel blends. Most researchers had suggested optimum blends from their respective studies that support capability for complete elimination of diesel from CI engines. Some researchers have used this binary fuel blend with minor adjustments to the engine parameters. These investigations have provided positive results. The comprehensive review concluded that binary fuel approach has potential to completely eliminate diesel from CI engines

    A proposal for integrated control of cowpea insect pests

    Get PDF

    Development of textured defatted sunflower meal by extrusion using response surface methodology

    Get PDF
    Sunflower (PSH 569) was used to obtain textured defatted meal. Proximate analysis, water absorption index (WAI), water solubility index (WSI), fat absorption capacities (FAC), foaming capacity (FC), and bulk density (BD) were determined. The objective of the study was the optimization of extrusion conditions for production of textured defatted sunflower meal using response surface methodology (RSM) by evaluating functional properties. It was dried, grinded, and sieved to eliminate hull and fibre. Numerical optimization provided eight solutions with desirability value varying from 0.81 to 0.82. Range of predicted values of FAC (80.96–90.49), WHC (1.95–2.12), WSI (3.22–3.36), WAI (2.84–3.08), bulk density (0.31–0.36), and foaming capacity (14.39–16.30) were used for numerical optimization. Best extrusion conditions were 16.36% feed moisture, 300 r.p.m. screw speed, and 149.40 °C barrel temperature. Textured sunflower defatted meal was prepared using the above optimized conditions

    Assessment of genetic variability and character association for grain yield and its component traits in bread wheat (Triticum aestivum L.)

    Get PDF
    A study was conducted for estimating genetic variability and characters association for eleven yield components using 169 genotypes (13 parents, 78 F1 and 78 F2) of bread wheat through half-diallel mating design during rabi season 2012-13 and 2013-14. The genetic variability, heritability in broad sense, genetic advance, correlation coefficients and path analysis were carried out for the assessment of genotypes through eleven yield component traits namely; days to 50% flowering, days to maturity, plant height, spike length, number of effective tillers per plant, number of grains per spikelet, number of grains per spike, 1000-grain weight, biological yield per plant, harvest index and grain yield per plant. Analysis of variance showed significant differences (at1% level of significance) for all the traits under study in both the generations (F1 and F2). The phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were high for plant height followed by number of effective tillers per plant, biological yield per plant, grain yield per plant, while high heritability coupled with high genetic advance were recorded for plant height and spike length in both F1 and F2 generations, respectively. Grain yield per plant was positively and significantly associated with a number of effective tillers per plant, spike length, number of grains per spike, 1000-grain weight, biological yield per plant and harvest index while significantly but negatively associated with plant height. Path analysis revealed that the traits namely biological yield per plant, number of effective tillers per plant, number of grains per spike, plant height and harvest index exhibited positive direct effects on grain yield at both phenotypic and genotypic level in both generation (F1 and F2). These results, thereby suggests that yield improvement in breads wheats could be possible by emphasizing these traits while making selections in early generations

    Pacific Island countries: in search of a trade strategy

    Get PDF
    International trade is vital for economic prosperity in Pacific island countries, but their trade performance has been weak over the past decade with the exception of resource-rich countries. Small country size and remoteness from global economic centers may have contributed to this relatively poor performance. However, the emergence of Asia as a global economic center presents Pacific island countries with an unprecedented opportunity to develop trade with Asia, particularly in tourism for a number of PICs. Moreover, if a strong two-way linkage is established between tourism and agriculture,Pacific island countries stands a better chance to improve broad-based growth
    • …
    corecore