29 research outputs found

    Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    Get PDF
    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element

    The genus Atheris (Serpentes: Viperidae) in East Africa: phylogeny and the role of rifting and climate in shaping the current pattern of species diversity

    No full text
    Past climatic and tectonic events are believed to have strongly influenced species diversity in the Eastern Afromontane Biodiversity Hotspot. We investigated the phylogenetic relationships and historical biogeography of the East African genus Atheris (Serpentes: Viperidae), and explored temporal and spatial relationships between Atheris species across Africa, and the impact of palaeoclimatic fluctuations and tectonic movements on cladogenesis of the genus. Using mitochondrial sequence data, the phylogeny of East African species of Atheris shows congruent temporal patterns that link diversification to major tectonic and aridification events within East Africa over the last 15million years (my). Our results are consistent with a scenario of a delayed direct west-east colonisation of the Eastern Arc Mountains of Atheris by the formation of the western rift. Based on the phylogenetic patterns, this terrestrial, forest-associated genus has dispersed into East Africa across a divided route, on both west-southeasterly and west-northeasterly directions (a C-shaped route). Cladogenesis in the Eastern Arc Mountains and Southern Highlands of Tanzania corresponds to late Miocene and Plio-Pleistocene climatic shifts. Taxonomically, our data confirmed the monophyly of Atheris as currently defined, and reveal four major East African clades, three of which occur in discrete mountain ranges. Possible cryptic taxa are identified in the Atheris rungweensis and A. ceratophora clades

    Seeking research-grounded solutions to problems of practice: classroom-based interventions in mathematics education

    No full text
    Research on classroom-based interventions in mathematics education has two core aims: (a) to improve classroom practice by engineering ways to act upon problems of practice; and (b) to deepen theoretical understanding of classroom phenomena that relate to these problems. Although there are notable examples of classroom-based intervention studies in mathematics education research since at least the 1930s, the number of such studies is small and acutely disproportionate to the number of studies that have documented problems of classroom practice for which solutions are sorely needed. In this paper we first make a case for the importance of research on classroom-based interventions and identify three important features of this research, which we then use to review the papers in this special issue. We also consider the issue of 'scaling up' promising classroom-based interventions in mathematics education, and we discuss a major obstacle that most such interventions find on the way to scaling up. This obstacle relates to their long duration, which means that possible adoption of these interventions would require practitioners to do major reorganizations of the mathematics curricula they follow in order to accommodate the time demands of the interventions. We argue that it is important, and conjecture that it is possible, to design interventions of short duration in mathematics education to alleviate major problems of classroom practice. Such interventions would be more amenable to scaling up, for they would allow more control over confounding variables and would make more practicable their incorporation into existing curriculum structures. © 2013 FIZ Karlsruhe
    corecore