48,229 research outputs found
BRST quantization of quasi-symplectic manifolds and beyond
We consider a class of \textit{factorizable} Poisson brackets which includes
almost all reasonable Poisson structures. A particular case of the factorizable
brackets are those associated with symplectic Lie algebroids. The BRST theory
is applied to describe the geometry underlying these brackets as well as to
develop a deformation quantization procedure in this particular case. This can
be viewed as an extension of the Fedosov deformation quantization to a wide
class of \textit{irregular} Poisson structures. In a more general case, the
factorizable Poisson brackets are shown to be closely connected with the notion
of -algebroid. A simple description is suggested for the geometry underlying
the factorizable Poisson brackets basing on construction of an odd Poisson
algebra bundle equipped with an abelian connection. It is shown that the
zero-curvature condition for this connection generates all the structure
relations for the -algebroid as well as a generalization of the Yang-Baxter
equation for the symplectic structure.Comment: Journal version, references and comments added, style improve
Magnetic monopole and string excitations in a two-dimensional spin ice
We study the magnetic excitations of a square lattice spin-ice recently
produced in an artificial form, as an array of nanoscale magnets. Our analysis,
based upon the dipolar interaction between the nanomagnetic islands, correctly
reproduces the ground-state observed experimentally. In addition, we find
magnetic monopole-like excitations effectively interacting by means of the
usual Coulombic plus a linear confining potential, the latter being related to
a string-like excitation binding the monopoles pairs, what indicates that the
fractionalization of magnetic dipoles may not be so easy in two dimensions.
These findings contrast this material with the three-dimensional analogue,
where such monopoles experience only the Coulombic interaction. We discuss,
however, two entropic effects that affect the monopole interactions: firstly,
the string configurational entropy may loose the string tension and then, free
magnetic monopoles should also be found in lower dimensional spin ices;
secondly, in contrast to the string configurational entropy, an entropically
driven Coulomb force, which increases with temperature, has the opposite effect
of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009
Otimização de técnica de descontaminação seletiva para isolamento de micobactérias a partir de amostras de cama de suínos.
Projeto: 03.04.03.051
Decoherence and thermalization dynamics of a quantum oscillator
We introduce the quantitative measures characterizing the rates of
decoherence and thermalization of quantum systems. We study the time evolution
of these measures in the case of a quantum harmonic oscillator whose relaxation
is described in the framework of the standard master equation, for various
initial states (coherent, `cat', squeezed and number). We establish the
conditions under which the true decoherence measure can be approximated by the
linear entropy . We show that at low temperatures and for
highly excited initial states the decoherence process consists of three
distinct stages with quite different time scales. In particular, the `cat'
states preserve 50% of the initial coherence for a long time interval which
increases logarithmically with increase of the initial energy.Comment: 24 pages, LaTex, 8 ps figures, accepted for publication in J. Opt.
Magnetic control of particle-injection in plasma based accelerators
The use of an external transverse magnetic field to trigger and to control
electron self-injection in laser- and particle-beam driven wakefield
accelerators is examined analytically and through full-scale particle-in-cell
simulations. A magnetic field can relax the injection threshold and can be used
to control main output beam features such as charge, energy, and transverse
dynamics in the ion channel associated with the plasma blowout. It is shown
that this mechanism could be studied using state-of-the-art magnetic fields in
next generation plasma accelerator experiments.Comment: 10 pages, 3 figure
Genome sequence of Rhizobium sullae HCNT1 isolated from Hedysarum coronarium nodules and featuring peculiar denitrification phenotypes
The genome sequence of Rhizobium sullae strain HCNT1, isolated from root nodules of the legume Hedysarum coronarium growing in wild stands in Tuscany, Italy, is described here. Unlike other R. sullae strains, this isolate features a truncated denitrification pathway lacking NO/N2O reductase activity and displaying high sensitivity to nitrite under anaerobic conditions
- …