We consider a class of \textit{factorizable} Poisson brackets which includes
almost all reasonable Poisson structures. A particular case of the factorizable
brackets are those associated with symplectic Lie algebroids. The BRST theory
is applied to describe the geometry underlying these brackets as well as to
develop a deformation quantization procedure in this particular case. This can
be viewed as an extension of the Fedosov deformation quantization to a wide
class of \textit{irregular} Poisson structures. In a more general case, the
factorizable Poisson brackets are shown to be closely connected with the notion
of n-algebroid. A simple description is suggested for the geometry underlying
the factorizable Poisson brackets basing on construction of an odd Poisson
algebra bundle equipped with an abelian connection. It is shown that the
zero-curvature condition for this connection generates all the structure
relations for the n-algebroid as well as a generalization of the Yang-Baxter
equation for the symplectic structure.Comment: Journal version, references and comments added, style improve