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ABSTRACT The genome sequence of Rhizobium sullae strain HCNT1, isolated from
root nodules of the legume Hedysarum coronarium growing in wild stands in Tus-
cany, Italy, is described here. Unlike other R. sullae strains, this isolate features a
truncated denitrification pathway lacking NO/N2O reductase activity and displaying
high sensitivity to nitrite under anaerobic conditions.

Rhizobium sullae (1) is a nitrogen-fixing symbiont of the legume Hedysarum coro-
narium L. (� Sulla coronaria, Medik), known as French honeysuckle, or sulla. The

plant is still occurring both as a cropped legume and as a spontaneous weed in
Mediterranean habitats, and it is particularly tolerant to drought and alkalinity. The
genome sequences of two other strains of the same bacterial species have been
published, including that of the type strain IS123 (2) isolated in southern Spain from its
host growing in the wild, and that of strain WSM1592 (3), isolated from cropped sulla
on the island of Sardinia (Italy). The present isolate, HCNT1 (�IMAP 801, �ATCC 43676)
(4), was isolated from root nodules of its host collected under spontaneous conditions
in the highly calcareous pliocenic clays near Volterra (Tuscany, Italy). The strain has
demonstrated peculiarities in comparison to its conspecific relatives, as it is endowed
with a unique denitrifying phenotype. While capable of reducing nitrite, it appears to
be incapable of coupling such a reaction to energy metabolism as true denitrifiers
would (5, 6). Cell growth is also inhibited under anaerobic conditions in the presence
of nitrite due to nitric oxide accumulation (7). The nitrite reductase of R. sullae HCNT1
has also shown to be active in reducing selenite besides nitrite (8).

Whole-genome sequencing was carried out using Illumina MiSeq sequencing tech-
nology (Ramaciotti Centre for Genomics, Sydney, Australia). The Nextera XT kit (Illu-
mina, Inc., San Diego, CA, USA) was employed for the generation of genomic libraries.
The number of paired-end reads (2 � 250 bp) obtained was 3,626,956, and this
accounted for 124-fold coverage of the studied genome. Up to 99.93% of these reads
were assembled into 54 scaffolds, and an N50 as high as 373,743 bp was obtained.
R. sullae HCNT1 has been shown to have a size of 7,298,178 bp, in which the G�C
content is 59.9%. Version 10.1.1 of CLC Genomics Workbench software (Qiagen Bioin-
formatics, Germany) was used to perform all the above-mentioned analyses.

The Rapid Annotations using Subsystems Technology (RAST) software (9) allowed
the identification of 7,441 coding sequences and 50 RNAs. Thirteen prophage and
phage sequences were found as well. It is also worth mentioning that virulence,
disease, and defense sequences accounted for up to 99 genes in this genome, of which
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the vast majority (80 genes) are related to resistance to antibiotics and toxic com-
pounds. Regarding the species characteristics, it is important to note that nitrogen
metabolism is represented by 70 genes, including a copper-containing nitrite reductase
(EC 1.7.2.1), 32 genes of which are related to denitrification. The genome sequence was
used as input for the PHASTER software (10). This yielded two incomplete prophage
regions.

A BLAST search of the 16S rRNA gene sequence against the NCBI nr database was
carried out, and interestingly, the highest similarity (99% identity) was obtained with
Rhizobium sp. strain WSM749 (not with R. sullae). This uncharacterized organism was
isolated in Morocco from Hedysarum flexuosum (11), which is the closest relative of
H. coronarium in terms of bacterial symbiont intercompatibility. In fact, isolates from
H. flexuosum can nodulate H. coronarium but are ineffective in fixing nitrogen (12).

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number PIQN00000000. The version described
in this paper is version PIQN01000000.
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