39 research outputs found

    Whose Algorithm Says So

    Get PDF
    Financial advisors seek to accurately measure individuals' risk preferences and provide sound personalized investment advice. Both advice tasks are increasingly offered through automated online technologies. Little is known, however, about what drives individuals' acceptance of such automated financial advice and, from a consumer point of view, which firms may be best positioned to provide such advice. We generate novel insights on these questions by conducting a real-world empirical study using an interactive automated online tool that employs an innovative computer algorithm to build pension investment profiles, the “Pension Builder,” and a large, representative sample. We focus on the role that two key firm characteristics have on consumer acceptance of pension investment advice generated by computer algorithms running on automated interactive online tools: profit orientation and role in the sales channel. We find that consumers' perceptions of trust and expertise of the firm providing the automated advice are important drivers of advice acceptance (besides a strong impact of the satisfaction with the consumer–online tool interaction), and that these constructs themselves are clearly influenced by the for-profit vs. not-for-profit orientation and the product provider vs. advisor only role in the sales channel of the firm pr

    Effects of exercise training on atrophy gene expression in skeletal muscle of mice with chronic allergic lung inflammation

    Get PDF
    We evaluated the effects of chronic allergic airway inflammation and of treadmill training (12 weeks) of low and moderate intensity on muscle fiber cross-sectional area and mRNA levels of atrogin-1 and MuRF1 in the mouse tibialis anterior muscle. Six 4-month-old male BALB/c mice (28.5 ± 0.8 g) per group were examined: 1) control, non-sensitized and non-trained (C); 2) ovalbumin sensitized (OA, 20 µg per mouse); 3) non-sensitized and trained at 50% maximum speed _ low intensity (PT50%); 4) non-sensitized and trained at 75% maximum speed _ moderate intensity (PT75%); 5) OA-sensitized and trained at 50% (OA+PT50%), 6) OA-sensitized and trained at 75% (OA+PT75%). There was no difference in muscle fiber cross-sectional area among groups and no difference in atrogin-1 and MuRF1 expression between C and OA groups. All exercised groups showed significantly decreased expression of atrogin-1 compared to C (1.01 ± 0.2-fold): PT50% = 0.71 ± 0.12-fold; OA+PT50% = 0.74 ± 0.03-fold; PT75% = 0.71 ± 0.09-fold; OA+PT75% = 0.74 ± 0.09-fold. Similarly significant results were obtained regarding MuRF1 gene expression compared to C (1.01 ± 0.23-fold): PT50% = 0.53 ± 0.20-fold; OA+PT50% = 0.55 ± 0.11-fold; PT75% = 0.35 ± 0.15-fold; OA+PT75% = 0.37 ± 0.08-fold. A short period of OA did not induce skeletal muscle atrophy in the mouse tibialis anterior muscle and aerobic training at low and moderate intensity negatively regulates the atrophy pathway in skeletal muscle of healthy mice or mice with allergic lung inflammation.FAPESPCNP

    Electronic resonance states in metallic nanowires during the breaking process simulated with the ultimate jellium model

    Get PDF
    We investigate the elongation and breaking process of metallic nanowires using the ultimate jellium model in self-consistent density-functional calculations of the electron structure. In this model the positive background charge deforms to follow the electron density and the energy minimization determines the shape of the system. However, we restrict the shape of the wires by assuming rotational invariance about the wire axis. First we study the stability of infinite wires and show that the quantum mechanical shell-structure stabilizes the uniform cylindrical geometry at given magic radii. Next, we focus on finite nanowires supported by leads modeled by freezing the shape of a uniform wire outside the constriction volume. We calculate the conductance during the elongation process using the adiabatic approximation and the WKB transmission formula. We also observe the correlated oscillations of the elongation force. In different stages of the elongation process two kinds of electronic structures appear: one with extended states throughout the wire and one with an atom-cluster like unit in the constriction and with well localized states. We discuss the origin of these structures.Comment: 11 pages, 8 figure
    corecore