1,262 research outputs found

    A 128K-bit CCD buffer memory system

    Get PDF
    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications

    Collective flow in central Au-Au collisions at 150, 250 and 400 A MeV

    Get PDF
    Radial collective flow and thermalization are studied in gold on gold collisions at 150, 250 and 400 A MeV bombarding energies with a relativistically covariant formulation of a QMD code. We find that radial flow and "thermal" energies calculated for all the charged fragments agree reasonably with the experimental values. The experimental hardware filter at small angles used in the FOPI experiments at higher energies selects mainly the thermalized particles.Comment: 4 pages with 4 EPS figures included. Version accepted for publication in Phys. Rev.

    Extracting particle freeze-out phase-space densities and entropies from sources imaged in heavy-ion reactions

    Get PDF
    The space-averaged phase-space density and entropy per particle are both fundamental observables which can be extracted from the two-particle correlation functions measured in heavy-ion collisions. Two techniques have been proposed to extract the densities from correlation data: either by using the radius parameters from Gaussian fits to meson correlations or by using source imaging, which may be applied to any like pair correlation. We show that the imaging and Gaussian fits give the same result in the case of meson interferometry. We discuss the concept of an equivalent instantaneous source on which both techniques rely. We also discuss the phase-space occupancy and entropy per particle. Finally, we propose an improved formula for the phase-space occupancy that has a more controlled dependence on the uncertainty of the experimentally measured source functions.Comment: 14 pages, final version, to appear PRC. Fixed typos, added refs. for last section, added discussions of imaging and d/p ratio

    Nuclear multifragmentation and fission: similarity and differences

    Full text link
    Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid--fog phase transition deep inside the spinodal region. The experimental data for p(8.1GeV) + Au collisions are analyzed. It is concluded that the decay process of hot nuclei is characterized by two size parameters: transition state and freeze-out volumes. The similarity between dynamics of fragmentation and ordinary fission is discussed. The IMF emission time is related to the mean rupture time at the multi-scission point, which corresponds to the kinetic freeze-out configuration.Comment: 7 pages, 3 Postscript figures, Proceedings of IWM 2005, Catani

    Nucleation of Quark--Gluon Plasma from Hadronic Matter

    Full text link
    The energy densities achieved during central collisions of large nuclei at Brookhaven's AGS may be high enough to allow the formation of quark--gluon plasma. Calculations based on relativistic nucleation theory suggest that rare events, perhaps one in every 102^2 or 103^3, undergo the phase transition. Experimental ramifications may include an enhancement in the ratio of pions to baryons, a reduction in the ratio of deuterons to protons, and a larger source size as seen by hadron interferometry.Comment: 22 pages, 7 figures available upon request, NUC--MINN--94/5--

    A unified description for nuclear equation of state and fragmentation in heavy ion collisions

    Full text link
    We propose a model that provides a unified description of nuclear equation of state and fragmentations. The equation of state is evaluated in Bragg-Williams as well as in Bethe-Peierls approximations and compared with that in the mean field theory with Skyrme interactions. The model shows a liquid-gas type phase transition. The nuclear fragment distributions are studied for different densities at finite temperatures. Power law behavior for fragments is observed at critical point. The study of fragment distribution and the second moment S2S_2 shows that the thermal critical point coincides with the percolation point at the critical density. High temperature behavior of the model shows characteristics of chemical equilibrium.Comment: 20 pages in RevTex, 11 figures (uuencoded ps files), to appear in Phys. Rev.

    Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation

    Full text link
    In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods were considered for this subdivision. First in the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar, both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter was predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods was the deformation dependence on the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method.Comment: 18 pages 24 figure

    Incorporating Radial Flow in the Lattice Gas Model for Nuclear Disassembly

    Get PDF
    We consider extensions of the lattice gas model to incorporate radial flow. Experimental data are used to set the magnitude of radial flow. This flow is then included in the Lattice Gas Model in a microcanonical formalism. For magnitudes of flow seen in experiments, the main effect of the flow on observables is a shift along the E/AE^*/A axis.Comment: Version accepted for publication in Phys. Rev. C, Rapid Communicatio

    Spinodal decomposition, nuclear fog and two characteristic volumes in thermal multifragmentation

    Full text link
    Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition inside the spinodal region. The experimental data for p(8.1GeV) + Au collisions are analyzed within the framework of the statistical multifragmentation model (SMM) for the events with emission of at least two IMFs. It is found that the partition of hot nuclei is specified after expansion to a volume equal to Vt = (2.6+-0.3) Vo, with Vo as the volume at normal density. However, the freeze-out volume is found to be twice as large: Vf = (5+-1) Vo.Comment: 8 pages, 6 figures, to be published in Nucl.Phys.
    corecore