67 research outputs found

    Quantised Vortices in an Exciton-Polariton Fluid

    Get PDF
    One of the most striking quantum effects in a low temperature interacting Bose gas is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its amazing features such as the persistence of superflows and the quantization of the angular momentum of vortices. The achievement of Bose-Einstein condensation (BEC) in dilute atomic gases provided an exceptional opportunity to observe and study superfluidity in an extremely clean and controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons has now been reported several times. Polaritons are strongly interacting light-matter quasi-particles, naturally occurring in semiconductor microcavities in the strong coupling regime and constitute a very interesting example of composite bosons. Even though pioneering experiments have recently addressed the propagation of a fluid of coherent polaritons, still no conclusive evidence is yet available of its superfluid nature. In the present Letter, we report the observation of spontaneous formation of pinned quantised vortices in the Bose-condensed phase of a polariton fluid by means of phase and amplitude imaging. Theoretical insight into the possible origin of such vortices is presented in terms of a generalised Gross-Pitaevskii equation. The implications of our observations concerning the superfluid nature of the non-equilibrium polariton fluid are finally discussed.Comment: 14 pages, 4 figure

    Role of RecA and the SOS Response in Thymineless Death in Escherichia coli

    Get PDF
    Thymineless death (TLD) is a classic and enigmatic phenomenon, documented in bacterial, yeast, and human cells, whereby cells lose viability rapidly when deprived of thymine. Despite its being the essential mode of action of important chemotherapeutic agents, and despite having been studied extensively for decades, the basic mechanisms of TLD have remained elusive. In Escherichia coli, several proteins involved in homologous recombination (HR) are required for TLD, however, surprisingly, RecA, the central HR protein and activator of the SOS DNA–damage response was reported not to be. We demonstrate that RecA and the SOS response are required for a substantial fraction of TLD. We show that some of the Rec proteins implicated previously promote TLD via facilitating activation of the SOS response and that, of the roughly 40 proteins upregulated by SOS, SulA, an SOS–inducible inhibitor of cell division, accounts for most or all of how SOS causes TLD. The data imply that much of TLD results from an irreversible cell-cycle checkpoint due to blocked cell division. FISH analyses of the DNA in cells undergoing TLD reveal blocked replication and apparent DNA loss with the region near the replication origin underrepresented initially and the region near the terminus lost later. Models implicating formation of single-strand DNA at blocked replication forks, a SulA-blocked cell cycle, and RecQ/RecJ-catalyzed DNA degradation and HR are discussed. The data predict the importance of DNA damage-response and HR networks to TLD and chemotherapy resistance in humans
    • …
    corecore