3,592 research outputs found

    Learning Active Basis Models by EM-Type Algorithms

    Full text link
    EM algorithm is a convenient tool for maximum likelihood model fitting when the data are incomplete or when there are latent variables or hidden states. In this review article we explain that EM algorithm is a natural computational scheme for learning image templates of object categories where the learning is not fully supervised. We represent an image template by an active basis model, which is a linear composition of a selected set of localized, elongated and oriented wavelet elements that are allowed to slightly perturb their locations and orientations to account for the deformations of object shapes. The model can be easily learned when the objects in the training images are of the same pose, and appear at the same location and scale. This is often called supervised learning. In the situation where the objects may appear at different unknown locations, orientations and scales in the training images, we have to incorporate the unknown locations, orientations and scales as latent variables into the image generation process, and learn the template by EM-type algorithms. The E-step imputes the unknown locations, orientations and scales based on the currently learned template. This step can be considered self-supervision, which involves using the current template to recognize the objects in the training images. The M-step then relearns the template based on the imputed locations, orientations and scales, and this is essentially the same as supervised learning. So the EM learning process iterates between recognition and supervised learning. We illustrate this scheme by several experiments.Comment: Published in at http://dx.doi.org/10.1214/09-STS281 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The role of SARS-CoV-2 ORF8 protein ARKS motif on novobiocin binding

    Get PDF
    The discovery of the SARS-CoV-2 virus during the COVID-19 pandemic required scientists to develop medical solutions to reduce infectivity, severity of symptoms, and death. Although vaccines and drugs provided urgent assistance, the need to continue developing better drugs is necessary long term, and understanding the structure of the virus and finding potential inhibitors would prove vital to discovering solutions to this worldwide health problem. This experimental project focuses on targeting the unique accessory protein, Open Reading Frame 8 (ORF8) in SARS-CoV-2 through studying its interactions with a repurposable drug, novobiocin. Importantly, ORF8 specializes in helping evade immune system checks by downregulating major histocompatibility complex I (MHC-I) after infection, and is also involved in inflammatory responses from the cytokine storm, the most prominent cause of fatalities from the virus. Additionally, the ORF8 protein has been proposed to act as a histone mimic at the histone-H3 ARKS motif that causes post-translational changes in chromatin, further worsening these problems through gene transcription. Previous in silico and in vitro work from our lab has shown that novobiocin [Kd = 54.5 ± 3.14 μM] and three other computationally verified ligands (iohexol [Kd = 1185 ± 193 μM], kaempferol-7-O-glucoside [Kd = 135 ± 10.9 μM] & lercanidipine hydrochloride [Kd = 52.7 ± 5.71 μM]) bind to. To probe the role of Arg in the histone-H3 ARKS motif, specific mutation was done in position 52 from Arg to Met, Glu and Leu respectively. The above results in drastic changes in intermolecular forces such as opposing charge, polarity and different sizes of these side chains that negatively affect novobiocin’s ability to bind to the ORF8 pocket , which this research aims to experimentally prove this hypothesis. In silico analyses for the mutagenic ORF8 were initially found to require more energy to bind novobiocin to the ARKS motif than wild-type, but was still possible to dock according to Swissdock. Primers for the ORF8 R52 mutants were then designed and mutagenic plasmids were constructed and sequence verified. Each of the mutant ORF8 proteins was overexpressed, purified, and Kd values for binding to novobiocin were determined via intrinsic fluorescence spectroscopy and compared with wild-type binding. This data will help further understand the role of SARS-CoV-2 ORF8 protein ARKS motif and how its interactions affected novobiocin binding, potentially benefitting future studies attempting to repurpose novobiocin and other ligands for treatment of the spreading virus

    The contributions of qqqqqˉqqqq\bar{q} components to the axial charges of proton and its resonances

    Full text link
    We calculate the axial charges of the proton and its resonances in the framework of the constituent quark model, which is extended to include the qqqqqˉqqqq\bar{q} components. If 20% admixtures of the qqqqqˉqqqq\bar{q} components in the proton are assumed, the theoretical value for the axial charge in our model is in good agreement with the empirical value, which can not be well reproduced in the traditional constituent quark model even though the SU(6)⨂O(3)SU(6) \bigotimes O(3) symmetry breaking or relativistic effect is taken into account. We also predict an unity axial charge for N∗(1440)N^{*}(1440) with 30% qqqqqˉqqqq\bar{q} components constrained by the strong and electromagnetic decays.Comment: 4 pages, 4 table

    Bacterial community analysis in upflow multilayer anaerobic reactor (UMAR) treating high-solids organic wastes

    Get PDF
    A novel anaerobic digestion configuration, the upflow multi-layer anaerobic reactor (UMAR), was developed to treat high-solids organic wastes. The UMAR was hypothesized to form multi-layer along depth due to the upflow plug flow; use of a recirculation system and a rotating distributor and baffles aimed to assist treating high-solids influent. The chemical oxygen demand (COD) removal efficiency and methane (CH4) production rate were 89% and 2.10 L CH4/L/day, respectively, at the peak influent COD concentration (110.4 g/L) and organic loading rate (7.5 g COD/L/day). The 454 pyrosequencing results clearly indicated heterogeneous distribution of bacterial communities at different vertical locations (upper, middle, and bottom) of the UMAR. Firmicutes was the dominant (>70%) phylum at the middle and bottom parts, while Deltaproteobacteria and Chloroflexi were only found in the upper part. Potential functions of the bacteria were discussed to speculate on their roles in the anaerobic performance of the UMAR system

    The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1

    Get PDF
    The tensin family member cten (C-terminal tensin like) is an Src homology 2 (SH2) and phosphotyrosine binding domain–containing focal adhesion molecule that may function as a tumor suppressor. However, the mechanism has not been well established. We report that cten binds to another tumor suppressor, deleted in liver cancer 1 (DLC-1), and the SH2 domain of cten is responsible for the interaction. Unexpectedly, the interaction between DLC-1 and the cten SH2 domain is independent of tyrosine phosphorylation of DLC-1. By site-directed mutagenesis, we have identified several amino acid residues on cten and DLC-1 that are essential for this interaction. Mutations on DLC-1 perturb the interaction with cten and disrupt the focal adhesion localization of DLC-1. Furthermore, these DLC-1 mutants have lost their tumor suppression activities. When these DLC-1 mutants were fused to a focal adhesion targeting sequence, their tumor suppression activities were significantly restored. These results provide a novel mechanism whereby the SH2 domain of cten-mediated focal adhesion localization of DLC-1 plays an essential role in its tumor suppression activity

    Non-Markovian quantum interconnect formed by a surface plasmon polariton waveguide

    Full text link
    Allowing the generation of effective interactions between distant quantum emitters (QEs) via flying photons, quantum interconnect (QI) is essentially a light-matter interface and acts as a building block in quantum technologies. A surface plasmon polariton (SPP) supported by a metallic waveguide provides an ideal interface to explore strong light-matter couplings and to realize QI. However, the loss of SPP in metal makes the mediated entanglement of the QEs damp with the increase of the distance and time, which hinders its applications. We propose a scheme of non-Markovian QI formed by the SPP of a metallic nanowire. A mechanism to make the generated entanglement of the QEs persistent is discovered. We find that, as long as bound states are formed in the energy spectrum of total QE-SPP system, the damping of the SPP-mediated entanglement is overcome even in the presence of the metal absorption to the SPP. Our finding enriches our understanding of light-matter couplings in absorptive medium and paves the way for using the SPP in designing QI.Comment: 7 pages and 3 figures in the main text. 3 pages in the supplemental materia
    • …
    corecore