4,657 research outputs found

    The response of a floating ice sheet to an accelerating line load

    Get PDF
    The two-dimensional response of a thin, floating sheet of ice to a line load that accelerates from rest at t=0t = 0 to a uniform velocity V for tTt \geq T is determined through an integral-transform solution of the linearized equations of motion. If T=0T = 0 – i.e. if the load is impulsively started with velocity V – the solution exhibits singularities at V=c0V = c_0, the shallow-water-gravity-wave speed, and V=cminV = c_{\min}, the minimum speed for transverse motion of the ice, but these singularities are avoided by the acceleration of the load through the critical speeds

    Heating Hot Atmospheres with Active Galactic Nuclei

    Full text link
    High resolution X-ray spectroscopy of the hot gas in galaxy clusters has shown that the gas is not cooling to low temperatures at the predicted rates of hundreds to thousands of solar masses per year. X-ray images have revealed giant cavities and shock fronts in the hot gas that provide a direct and relatively reliable means of measuring the energy injected into hot atmospheres by active galactic nuclei (AGN). Average radio jet powers are near those required to offset radiative losses and to suppress cooling in isolated giant elliptical galaxies, and in larger systems up to the richest galaxy clusters. This coincidence suggests that heating and cooling are coupled by feedback, which suppresses star formation and the growth of luminous galaxies. How jet energy is converted to heat and the degree to which other heating mechanisms are contributing, eg. thermal conduction, are not well understood. Outburst energies require substantial late growth of supermassive black holes. Unless all of the approximately 10E62 erg required to suppress star formation is deposited in the cooling regions of clusters, AGN outbursts must alter large-scale properties of the intracluster medium.Comment: 60 pages, 12 figures, to appear in 1997 Annual Reviews of Astronomy and Astrophysics. This version supersedes the April 2007 version in Reviews in Advance (references and minor corrections were added), and is similar to the one scheduled to appear in Volume 45 of ARA

    Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy

    Get PDF
    Corticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, that is, "direct" action on cells involved in myelin genesis [oligodendrocytes and their progenitors the oligodendrocyte precursor cells (OPCs)] versus "indirect" action on other neural cells. We evaluated the effects of the widely used CS dexamethasone (DEX) on purified OPCs and oligodendrocytes, employing complementary histological and transcriptional analyses. Histological assessments showed no DEX effects on OPC proliferation or oligodendrocyte genesis/maturation (key processes underpinning myelin genesis). Immunostaining and RT-PCR analyses show that both cell types express glucocorticoid receptor (GR; the target for DEX action), ruling out receptor expression as a causal factor in the lack of DEX-responsiveness. GRs function as ligand-activated transcription factors, so we simultaneously analyzed DEX-induced transcriptional responses using microarray analyses; these substantiated the histological findings, with limited gene expression changes in DEX-treated OPCs and oligodendrocytes. With identical treatment, microglial cells showed profound and global changes post-DEX addition; an unexpected finding was the identification of the transcription factor Olig1, a master regulator of myelination, as a DEX responsive gene in microglia. Our data indicate that CS-induced myelination delays are unlikely to be due to direct drug action on OPCs or oligodendrocytes, and may occur secondary to alterations in other neural cells, such as the immune component. To the best of our knowledge, this is the first comparative molecular and cellular analysis of CS effects in glial cells, to investigate the targets of this major class of anti-inflammatory drugs as a basis for myelination deficits

    Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: Dependence of performance on the central coordinating metals

    Get PDF
    Development of efficient photocatalytic hydrogen evolution reaction (HER) with illumination of visible light is challenging. In this work, five chlorophyll derivatives (M-Chls; M = H2/Cu/Ni/Co/Zn) with different central ions in its cyclic tetrapyrrole ring including free base, copper, nickel, cobalt, and zinc were synthesized and employed as the effective visible-light harvester for efficient HER. In addition, two-dimensional (2D) noble metal-free co-catalyst Ti3C2Tx MXene was used as an excellent electron capturer due to its outstanding conductivity property. These M-Chls are modified on the surface of Ti3C2Tx MXene with 2D accordion-like morphology by means of a simple deposition process to form noble metal-free Chl/Ti3C2Tx-based photocatalysts for HER. It is found that the best HER performance as high as 49 μmol/h/gcat was achieved with the Co-Chl@Ti3C2Tx hybrid, which was much higher than those of other M-Chl@Ti3C2Tx composites. This research provides a specific way to synthesize low-cost and environmentally friendly natural Chls for developing highly efficient photocatalytic HER through molecular engineering

    Polarized Matrix Infrared Spectra Of Cyclopentadienone - An Important Reactive Intermediate In Combustion And Biomass Pyrolysis

    Get PDF
    A detailed vibrational analysis of the infrared spectra of cyclopentadienone (C5H4=O and C5D4=O) in rare gas matrices has been carried out. Ab initio coupled-cluster anharmonic force field calculations were used to guide the assignments. Flash pyrolysis of o-phenylene sulfite (C6H4O2SO and C6D4O2SO) was used to provide a molecular beam of cyclopentadienone entrained in the rare gas carrier. The beam was interrogated with time-of-flight photoionization mass spectrometry (TOF-PIMS), confirming the clean, intense production of C5H4=O. Matrix isolation infrared spectroscopy was coupled with 355 nm polarized UV for photo-orientation and linear dichroism experiments to determine the symmetries of the vibrations

    Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads

    Full text link
    An interacting one-dimensional electron system, the Luttinger liquid, is distinct from the "conventional" Fermi liquids formed by interacting electrons in two and three dimensions. Some of its most spectacular properties are revealed in the process of electron tunneling: as a function of the applied bias or temperature the tunneling current demonstrates a non-trivial power-law suppression. Here, we create a system which emulates tunneling in a Luttinger liquid, by controlling the interaction of the tunneling electron with its environment. We further replace a single tunneling barrier with a double-barrier resonant level structure and investigate resonant tunneling between Luttinger liquids. For the first time, we observe perfect transparency of the resonant level embedded in the interacting environment, while the width of the resonance tends to zero. We argue that this unique behavior results from many-body physics of interacting electrons and signals the presence of a quantum phase transition (QPT). In our samples many parameters, including the interaction strength, can be precisely controlled; thus, we have created an attractive model system for studying quantum critical phenomena in general. Our work therefore has broadly reaching implications for understanding QPTs in more complex systems, such as cold atoms and strongly correlated bulk materials.Comment: 11 pages total (main text + supplementary

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity
    corecore