147 research outputs found

    Fan and Ventilation Rate Monitoring of Cage-Free Layer Houses in California

    Get PDF
    Ventilation rates were continuously monitored in two cage-free layer houses located in California from March 1, 2012 to May 13, 2013. The average number of brown Lohmann laying hens in each house was 33,300. Temperature, relative humidity, static pressure, and running status of 48 ventilation fans were continuously monitored and recorded every minute. Regression models were developed to relate house temperature and ventilation rate to inlet air temperature, and to relate airflow rate to building static pressure (R2 = 0.98). Results showed that the daily mean ventilation rate per hen ranged from 1.91 to 8.72 m3 h-1 hen-1, averaging at 4.49 ±1.53 m3 h-1 hen-1. The standard uncertainty of daily mean ventilation rate was determined to be 3.7%. The 91-cm and 130-cm fans were found to perform at 82% and 63% of the manufacturer rated airflow rates, respectively. The minimum and maximum static pressure was 11.0 and 50.6 Pa, respectively, corresponding to 2 and 16 running tunnel fans. When the house temperature exceeded 30ºC, an evaporative cooling system was activated, which could reduce the inlet air temperature by 6.3ºC and concurrently increased the indoor air humidity ratio by 3.4 g per kg dry air. Cooling pad efficiency was 66%. The sidewall fans and tunnel fans were operated at 65% and 20% of the total time when layers occupied the houses. The new rational formula to calculate dry base ventilation rates was developed based upon the ratio of water vapor volume to moist air volume. The developed models and data collected in this research can be used to calculate the ventilation rates in cage-free layer houses so that it can be possible to assure healthy conditions needed for layers. They can also be used in the design of cage free houses and in the calculations of emissions of air pollutants from these houses

    Interactions Between Nanoparticles and Dendritic Cells: From the Perspective of Cancer Immunotherapy

    Get PDF
    Dendritic cells (DCs) are the primary antigen-presenting cells and play key roles in the orchestration of the innate and adaptive immune system. Targeting DCs by nanotechnology stands as a promising strategy for cancer immunotherapy. The physicochemical properties of nanoparticles (NPs) influence their interactions with DCs, thus altering the immune outcome of DCs by changing their functions in the processes of maturation, homing, antigen processing and antigen presentation. In this review, we summarize the recent progress in targeting DCs using NPs as a drug delivery carrier in cancer immunotherapy, the recognition of NPs by DCs, and the ways the physicochemical properties of NPs affect DCs' functions. Finally, the molecular pathways in DCs that are affected by NPs are also discussed

    Altered Local and Large-Scale Dynamic Functional Connectivity Variability in Posttraumatic Stress Disorder: A Resting-State fMRI Study

    Get PDF
    Posttraumatic stress disorder (PTSD) is a psychiatric condition that can emerge after exposure to an exceedingly traumatic event. Previous neuroimaging studies have indicated that PTSD is characterized by aberrant resting-state functional connectivity (FC). However, few existing studies on PTSD have examined dynamic changes in resting-state FC related to network formation, interaction, and dissolution over time. In this study, we compared the dynamic resting-state local and large-scale FC between PTSD patients (n = 22) and healthy controls (HC; n = 22; conducted as standard deviation in resting-state local and large-scale FC over a series of sliding windows). Local dynamic FC was examined by calculating the dynamic regional homogeneity (dReHo), and large-scale dynamic FC (dFC) was investigated between regions with significant dReHo group differences. For the PTSD patients, we also investigated the relationship between symptom severity and dFC/dReHo. Our results showed that PTSD patients were characterized by I) increased dynamic (more variable) dReHo in left precuneus (PCu); II) increased dynamic (more variable) dFC between the left PCu and left insula; and III) decreased dFC between left PCu and left inferior parietal lobe (IPL), and decreased dFC between left PCu and right PCu. However, there is no significant correlation between the clinical indicators and dReHo/dFC after the family-wise-error (FWE) correction. These findings provided the initial evidence that PTSD is characterized by aberrant patterns of fluctuating communication within brain system such as the default mode network (DMN) and among different brain systems such as the salience network and the DMN

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B1013 GB\rm \sim 10^{13}~G, D6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443
    corecore