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Dendritic cells (DCs) are the primary antigen-presenting cells and play key roles

in the orchestration of the innate and adaptive immune system. Targeting DCs

by nanotechnology stands as a promising strategy for cancer immunotherapy. The

physicochemical properties of nanoparticles (NPs) influence their interactions with DCs,

thus altering the immune outcome of DCs by changing their functions in the processes

of maturation, homing, antigen processing and antigen presentation. In this review,

we summarize the recent progress in targeting DCs using NPs as a drug delivery

carrier in cancer immunotherapy, the recognition of NPs by DCs, and the ways the

physicochemical properties of NPs affect DCs’ functions. Finally, the molecular pathways

in DCs that are affected by NPs are also discussed.
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INTRODUCTION

The human body relies on two well-coordinated immune mechanisms for foreign invader defense,
antigen non-specific innate immunity and highly evolved antigen specific adaptive immunity. The
major functions of innate immunity are to rapidly eliminate pathogens and in a late stage, to
transmit risk signals to adaptive immunity to activate the specific responses. While macrophages
and natural killer (NK) cells primarily degrade and remove pathogens in non-specific ways, antigen
processing cells (APCs) process and present pathogen signals to adaptive effector cells including
T cells (1) and B cells (2, 3). Dendritic cells (DCs) are professional APCs. Originating from
the bone marrow as progenitor cells with high phagocytic capabilities, DCs undergo maturation
in the peripheral lymphatic organs. Maturation of DCs is triggered by pathogen uptake and is
characterized bymorphological changes, the expression of co-stimulatorymolecules and the release
of cytokines. During the maturation process, DCs migrate to lymphatic organs, where they activate
both memory and naïve T cells, and thus are regarded as the most potent APCs. Because of their
central role in inducing adaptive immunity, in recent decades, DCs have been extensively studied
toward the aim of vaccine development and cancer immunotherapy (4, 5).

Cancer immunotherapy is regarded as an important progress for cancer treatment in the first
decade of the 21st century. The success of some small-scale trials based on two major strategies,
checkpoint blockage with antibodies and ex vivo T cells engineering, has boosted the development
of cancer immunotherapy in recent years (6, 7). Because of the limits of these approaches (8),
a third strategy, DC vaccination has been considered (9). Although less developed and with
unknown efficacy, some clinical trials based on this approach have shown promise (10, 11).
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In this strategy, DCs are manipulated by either ex vivo or in vivo
approaches. Compared to an in vivo approach in whichmolecules
are directly applied to patients to target DCs, in an ex vivo
approach, DC precursors isolated from patients are stimulated in
the laboratory for maturation by specific antigen and adjuvants,
and then are applied back to the patient to activate adaptive
immunity. Until now, the functional equality was unknown
between ex vivo and in vivo matured DCs, but studies implicate
that DCs undergo maturation differently ex vivo than in vivo.

Nanoparticles (NPs) in human blood and lymph are primarily
captured by macrophages in the circulation and in tissues
composed of the reticuloendothelial system, such as the liver
and spleen. The latest studies revealed that precursor DCs
patrolling the blood and immature DCs residing in peripheral
tissues, such as the kidney and skin, also actively capture
NPs, and subject their functions to alteration. These discoveries
encouraged interests in using NPs to control DC functions in
favor of cancer immunotherapy. The physicochemical attributes
of NPs make them especially intriguing for both ex vivo and
in vivo DC manipulation. As a novel DC targeting tool, NPs
have at least the following advantages compared to traditional
tools. (1) NPs such as gold nanorods (12) and carbon black
NPs (13), are adjuvants per se and are able to prime DC
maturation, thus enhancing humoral and cellular immune
responses by synergizing the immunogenicity of antigens. (2)
By optimizing the physicochemical properties, NPs can carry
antigens or vaccines and directly deliver them to the mature
DCs within the secondary lymph organs. In this way, stronger
immune responses can be achieved without the accompanying
immune tolerance induced by premature DCs (14–16). (3) NPs
protect some antigens, such as peptides, from degradation by
proteases (17, 18). (4) Using NPs as a platform, co-delivery
of two or even more moieties can be realized to achieve
stronger immune responses (17–25). Widely used combinations
include tumor antigens together with adjuvants such as Toll-like
receptor agonists (18, 23–30), or antigens with siRNAs, which
silence immunosuppressive genes (31). This property is especially
important for some antigens with weak immunogenicity (18).
(5) Within DCs, a sustainable release of therapeutics can be
achieved by NP carriers through chemical modification on their
surface, thus activating DCs more efficiently (22, 32). Until now,
different NPs, such as carbon nanotubes (CNTs) (23–25, 33), gold
NPs (16, 34, 35), natural NPs [starch (36) and chitosan (37)]
or synthetic polymer NPs (38–40) have been studied as vaccine
carriers and/or adjuvants by distinct strategies. Even though the
rapid advancement, the status quo is that this is still a newly
emerging field and its maturation has been hindered by hurdles
such as safety of NPs, and a costly and time-consuming process
to harvest DCs from patients. An example of using NPs to
stimulate the ex vivo maturation of immature DCs (iDCs) for
immunotherapy was shown in Figure 1. NP applications for DC
manipulation have been well reviewed in some recent excellent
literature (41–43). In this article, we first summarize the latest
progress of using NPs for cancer immunotherapy. With the aim
of providing mechanistic insights on NPs-DCs interactions, we
next focus on the latest knowledge in the recognition and uptake
of NPs by DCs, and the ways NPs affect DC functions. We also
discuss possible mechanisms underlying these effects.

DC-TARGETING STRATEGY USING NPs
FOR CANCER IMMUNOTHERAPY

By using NPs as a multifunctional drug delivery carrier for in
vivo DC-targeting, some promising cancer immunotherapeutic
outcomes have been achieved. In some cases, animal survival
rates improved because of the success of tumor growth
inhibition. For example, multi-walled CNTs (MWCNTs) loaded
with cancer testis antigen and Toll-like receptor agonist were
quickly taken up by DCs after administered to animals. Inside
DCs, the carried antigen was slowly released, driving DCs to
continually activate CD4+ and CD8+ T cell immune responses.
Consequently, tumor development was greatly delayed and
mouse survival was prolonged (23). In another study, co-
delivery of OVA and immune-adjuvants by MWCNTs to DCs
dramatically inhibited the growth of OVA-expressing melanoma
cells in mice (44).

In some other studies, cancer killing molecules and cytotoxic
T cells were activated by a NPs mediated targeting strategy.
For example, single-walled CNTs (SWCNTs) carrying a peptide
tumor antigen to DCs induced specific IgG responses against
this antigen in mice, while there were no such responses
when mice were challenged with antigen alone (18). When
uploaded by upconversionNPs, the injected ovalbumin enhanced
the homing capability of DCs to draining lymph nodes
in mice, and significantly induced cytotoxic T lymphocytes
and the production of cancer killing molecules such as
IFN-γ (17). After administration to mice, gold NPs with
polyelectrolyte multilayer coatings increased DC activation and
antigen presentation and induced a high level of antigen
specific CD8+ T cell immune response in blood (45). Although
in these studies cancer inhibition or animal survival data
were not reported, the stimulation of cancer killing cytokines
and cytotoxic T cells is an indication of better cancer
therapeutic efficacy. Some more examples of NPs that were
studied for DC-targeted antigen delivery were summarized in
Table 1.

RECOGNITION AND UPTAKE OF NPS BY
DCs

In vitro studies using DC models derived from different species
(54–56) revealed that, as in other cell types, the uptake of NPs by
DCs is either energy dependent or independent (57). Depending
on the physicochemical properties of NPs, all four endocytosis
pathways are reportedly used by DCs for NPs uptake (Table 2)
(52, 60, 63, 64). For example, small sized NPs take a clathrin- and
scavenger receptors-dependent pathway (55), while those with
diameters larger than 250 nm enter DCs primarily by clathrin
independent ways (60–62).

Physicochemical properties of NPs dictate the recognition and
uptake process. Recent studies consistently reveal that smaller
NPs are easier for DCs to take up. For example, compared to
those with a diameter larger than 1µm, PLGA NPs of 300 nm
have the higher uptake efficiency by DCs (64–66). Another
example is that polypropylene sulfide NPs with a size of 20 nm
accumulated in DCs in the lymph nodes more efficiently than
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FIGURE 1 | Schematics of an example using NPs for DC-mediated immunotherapy. In this example, immature DCs (iDCs) are harvested from patients’ bone marrow.

NPs loaded with effect molecules are used to pulse and stimulate the maturation of iDCs ex vivo. The mature DCs were reapplied to patients for immunotherapy.

TABLE 1 | NPs used for DC-targeted antigen delivery.

Category NP materials Antigen/pathogen References

Liposome Lipid NY-ESO-1 (46)

Lipid OVA (47)

Cationic lipid OVA (48)

Polymer PLGA OVA and

monophosphoryl

lipid A

(49)

PLGA Tetanus toxoid (50)

γ-PGA OVA (51)

Poly(propylene sulfide) OVA (52)

Inorganic MWCNTs OVA, CpG (44)

Upconversion NPs OVA (17)

GNPs Peptide antigen

and receptor

agonist

(45)

Viruses particle Adenoviral vectors TRP2 (53)

NY-ESO-1,a human tumor antigen that is highly expressed in melanomas; PLGA,

poly(lactic-co-glycolic acid); γPGA, poly-γ-glutamic acid; OVA, Ovalbumin; TRP2,

tyrosinase-related proteins 2.

those of 45 and 100 nm, thus inducing more greater immunity
(67). Shorter MWCNTs showed better cellular uptake compared
to longer ones, and consequently induced more potent immune
responses (25, 33). However, there are paradoxical opinions on
the relationship between NPs size and their adjuvant activity,
since NPs with different material components have their own
optimum size for the induction of immune response (68).

Surface chemistry, such as charge and ligand organization
pattern, affects NP internalization by DCs. An example is
the positive charge on the gold NP surface led to a higher

uptake efficiency by human monocyte-derived DCs (69). Early
studies showed that the surface hydrophobicity of NPs was
correlated with DCs mediated immune effects (70, 71). For
example, hydrophobic segments in amphiphilic γ-PGA NPs’
surface significantly increased their interactions with DCs and
the consequent immune responses (72, 73). Another example
is the zwitterionic ligand coated gold NPs (<3 nm in size)
had a higher DCs uptake efficiency compared to those coated
with PEGylated ligands (58). In one study, DCs took up NPs
coated with PEG-3000 in a higher efficiency compared to those
coated with shorter or longer PEG chain (74). Phosphatidylserine
modification increased the internalization of SWCNTs by DCs
compared to pristine ones or those coated with phosphocholine
(75). The presence of aromatic structures on the NP surface
resulted in the enhanced uptake of negatively charged GNPs
and the activation of DCs (76). Not only chemistry type but
also structural organization of surface chemical molecules affects
the uptake process by DCs. For example, gold NPs coated
with organized striations of alternating anionic and hydrophobic
groups penetrated the plasmamembrane and entered the cytosol,
whereas those with randomly organized functional groups of the
same composition were mostly trapped in endosomes of DCs
(57).

The shape of the NPs also affects the recognition and uptake
by DCs. Compared to spherical counterparts of the same size,
gold nanorods and peptide nanofibers showed higher uptake
efficiency by DCs in regards to the number of internalized
NPs per cell (34, 77). Interestingly, only higher uptake of
peptide nanofibers led to a stronger adjuvant efficiency, and gold
nanorods actually did not. In another study, the uptake efficiency
of rod-shaped PEG-based hydrogel NPs by mouse bone marrow-
derived DCs was lower than that of disc-shaped NPs with similar
volume and dimensions (78).

In in vivo models, physicochemical properties of NPs again
govern their interaction with DCs. In one study, cationic NPs
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TABLE 2 | Effect of NPs’ properties on cellular uptake.

ID of ENPs Physicochemical properties Cell source Cellular uptake References

Gold nanoclusters (GNCs) ∼2 nm in size, coated with

mixture of zwitterionic and

carbohydrate ligands

hDCs from blood Clathrin-, F-actin-, and C-lectin dependent

uptake

(54, 58)

Hybrid TiO2/para-amino

benzoic acid NPs

5–6 nm hDCs from blood Macropinocytosis (59)

GNPs ∼6 nm, coated with ordered or

random arranged hydrophilic and

hydrophobic groups

DC2.4 cells Ordered structure: energy-independent;

Random structure: energy-dependent

(57)

QDs with cadmium/selenide

core and a zinc sulfide shell

18 nm, coated with carboxylic

acid

Pig MDCs from blood Clathrin- and scavenger receptor dependent

endocytosis

(55)

Poly(propylene sulfide) NPs 45 nm, labeled with Alexa488 BMDCs Clathrin-mediated endocytosis, and

Macropinocytosis

(52)

PLGA NPs 135 nm, untargeted PEGylated

surface

BMDCs Clathrin-mediated endocytosis,

caveolin-mediated endocytosis, and

macropinocytosis

(56)

Gelatin NPs 245 nm, carrying model drug BMDCs Phagocytosis (60)

PLGA NPs 360 nm, carrying model drug BMDCs Phagocytosis (61)

PLGA NPs 500∼600 nm, carrying model

drug

hMDCs from blood Phagocytosis (62)

*h denotes human; BMDCs, bone marrow-derived DCs; PEG, Polyethylene glycol.

more readily associated with both CD11b and CD103 DC
subtypes in the lung than anionic ones, thus resulting in a higher
expression level of Ccl2 and Cxc10, two important chemokines
that recruit DCs into the drainage lymph nodes (79). NPs
uptake by DCs in administration sites and the accumulation
in drainage lymph nodes was reported after administration by
different routes (67, 80–84). In some studies, the uptake of NPs
by DCs residing in lymph nodes was also detected (67, 80, 85, 86).
Detailed studies showed that the locally injected NPs migrate to
lymph nodes by two routes, i.e., through direct draining of NPs,
or through DCs migration from injection site to lymph nodes,
where NPs are re-taken up (86). Studies suggest that depending
on the composition, NPs with a diameter less than 200 nm usually
take the first route, while larger ones take the second route
(27, 67, 85–88).

NPs AFFECT DC FUNCTIONS

In peripheral organs and in the blood, premature DCs internalize
pathogens or foreign antigens and migrate to draining lymphoid
tissue, where they undergo the maturation process characterized
by morphological changes and increased expression of cytokines
required for priming T cell and membrane molecules, such as
CD40, CD80, CD86, DEC205, and MHC molecules (89). In the
draining lymphoid tissues, mature DCs activate effector T cells
(90). Mature DCs strongly stimulate naïve andmemory T cells by
presenting antigens. Depending on the way DCs are activated, T
cells are stimulated by DCs to differentiate into distinct lineages
of T helper (Th) cells, primarily including Th1, Th2, and Th17,
which lead to cellular immunity, humoral immunity, and tissue
inflammation, respectively. Recent studies revealed NPs affect all
steps of DCs induced immunity.

NPs Affect DC Maturation
Long-term immune protection against tumors or pathogens
requires the expansion of antigen-specific effector and memory
T cells. Naïve T cell expansion can only be efficiently stimulated
by mature DCs; therefore, the maturation of premature DCs is
critical for the realization of efficient immunotherapy. Recent
studies have shown that NPs favor the maturation process of
DCs. For example, in in vitro culture, γ-PGA-Phe NPs induced
a significant increase in the expression of maturation markers
of DCs, and this capability is size-dependent (39, 86, 87). Gold
nanorods were also reported to promote DC maturation and
downstream immunity, and this effect depended on their surface
chemistry (35, 91). Chitosan and other polymer NPs induced
DC maturation in a similar way to LPS treatment (92, 93).
According to recent research, ZnO NPs at a concentration of
30µg/mL upregulated the expression of costimulatory molecules
CD80 and CD86, and the secretion of IL-6 and TNF-α (94),
but they did not show such effects at lower concentrations
(10µg/mL) (95). These effects are shape-independent, since
spherical and sheet-shaped ZnONPs with similar specific surface
area showed similar effects (94). C60 fullerenes (96), carbon
black (97, 98), (Gd@C82(OH)22)n (99, 100), and layered double
hydroxide (LDH) NPs (101) were all reported to increase
the expression of MHC and co-stimulatory molecules on DC
surface. In another study, polyanhydrides NPs activated DCs
with an efficiency that was dependent on their shape and surface
hydrophilicity/hydrophobicity (102).

However, NPs are also reported to inhibit the maturation of
DCs. For example, treatment with negatively charged QD655-
COOH (18 nm) suppressed the expression of CD80/CD86
stimulated by LPS in porcine monocyte-derived DCs (55). In
human DCs, gold NPs with a diameter of 10 nm inhibited
the expression of CD86, CD83, and IL-12p70 induced by LPS
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treatment (103). These findings warrant further investigations to
avoid side effects of NPs when used for cancer immunotherapy.

NPs Affect Homing Capability of DCs
To activate T cells, DCs must migrate to lymphoid organs
and localize closely to the residence T cells, a process known
as DCs homing. A high homing efficiency is critical for a
successful DCs-based immunotherapy. The homing of DCs can
be improved by approaches including pre-injection of pro-
inflammatory cytokines or DC homing receptors (104), and
optimization of DCs’ administration route and times (105).
Even with this, the DC homing efficiency remains unsatisfactory
(106). Recently, magnetic NPs have been used under an external
magnetic field to promote the homing capability of DCs after
in vitro activation (107). Some studies suggested that in vitro
pulsed DCs by NPs accumulate in draining lymph nodes (17, 18),
however, very little is known about NPs’ effects on homing
capability of DCs. One study suggested that NPs may improve
DC homing by increasing the expression of chemokine receptor
7 (CCR7) onDCs surface and leading to the rearrangement of the
cytoskeleton (16).

In addition to chemokines on the surface, it is well known
that the maturation status of DCs determines their migration
to draining lymph nodes (108). It is possible that NPs affects
DCs’ homing capability by influencing the maturation status of
DCs. Future studies are necessary to further understanding of this
aspect.

NPs Compromised Antigen Processing and
Presentation Capability of DCs
After digestion by APC cells, antigen fragments will be displayed
on the cell surface together with either class I or class II MHC
molecules, and consequently are recognized by CD4+ (helper) or
CD8+ (cytotoxic) T cells, respectively. This process is known as
processing and presentation of APC (109–111). It is well reported
that NPs change the antigen processing capability of DCs.
In vivo, after pharyngeal aspiration, SWCNTs inhibited DCs’
functions of antigen capture/processing and presentation but not
their maturation process, thus causing decreased proliferation
of splenic T cells (112). In in vitro culture, murine DCs treated
with graphene oxide (GO) engulfed antigen normally but showed
an impaired capability to process antigen and activate antigen-
specific T lymphocytes (96). This effect was specific to GO and
was not found for other carbon-based NPs, probably due to
its planar and negative charged surface. Another example is
that treatment with super-paramagnetic iron oxide NPs (PVA-
SPIONs) compromised DCs’ capability of processing model
antigen DQ-OVA with or without concomitant LPS exposure
but did not impair their maturation after antigen uptake. As
a consequence, the expression of MHCII and the capacity to
stimulate autologous CD4+ T cells in vitro were compromised
(113).

Harnessing the ability of DCs to induce antigen-specific CD8+

T cell immunity (cross-presentation) is crucial for development
of antitumor vaccines. As potential vaccine carriers, NPs could
enhance antigen cross-presentation of DCs, thereby produce
stronger antitumor immunity. For example, as shown in both in

vivo and in vitro experiments, treatment with polymer NPs such
as γ-PGA NPs (114, 115), PLGA NPs (116), polyethyleneimine
NPs (117) and poly(propylene sulfide) NPs (52) promoted OVA-
mediated cross-presentation in DCs by different mechanisms.
Changing size and surface chemistry of NPs were effective
ways to regulate their effects on antigen cross-presentation
intensity of DCs (118, 119). Some metal oxide NPs such as
aluminum hydroxide (120) and super-paramagnetic iron oxide
NPs (SPIONs) (121) were also reported to improve the cross-
presentation ability of DCs. These above studies suggested a
potential strategy of using nanotechnology to develop DCs-based
cancer immunotherapy.

NPs Affect DC Induced T Cell
Differentiation
NPs have long been known to affect DCs’ induction of T
cell differentiation. For example, exposure to carbon black
NPs or diesel exhaust of different sizes significantly enhanced
the capacity of bone marrow-derived DCs to stimulate T-cell
proliferation (97, 98). When cultured with CD4+ T cells, human
monocyte-derived DCs after treatment with poly(vinylalcohol)-
coated SPIONs (PVA-SPIONs) showed an impaired capability to
activate CD4+ T cell and altered the cytokine release profiles
(113). Mechanistically, NP exposure suppressed DCs’ capacity
to process and present antigen. In another study, porous silicon
NPs modified by high C-H structures strongly enhanced DCs’
activation of T cell differentiation (122).

SomeNPs promoted DCs capability to stimulate both Th1 and
Th2 differentiation (123). However, recent studies revealed that
treatment with NPs may bias DC induced T cell differentiation
directions. For example, SWCNTs (124), (Gd@C82(OH)22)n
(99, 100), magnetic iron oxide NPs (MIONs) (125), oxidative
TiO2 NPs (126), and PLGA NPs (127) were reported to
increase Th1 cell proliferations, while 10 nm gold NPs (103)
and CeO2 NPs (126) potentiate DCs’ capability to promote
Th2 polarization. Moreover, this polarization effect is related
to the surface chemistry. For example, gold nanorods coated
with poly(diallydimethylammonium chloride) (PDDAC) and
polyethyleneimine (PEI) showed a Th2 polarization activity,
while those coated with cetyltrimethylammonium bromide
did not (35). In another study, TiO2 NPs induced DC
maturation and polarized T cells toward Th1-based responses,
while CeO2 NPs treated DCs induced Th2-dominated T cell
profile (128). Some NPs, such as polystyrene NPs (50 nm)
(129), were found to inhibit Th2 polarization without affecting
Th1 immunity. Not only NPs composition but also the NPs
treatment conditions determines DCs induction effects on
T cell differentiation. For example, SWCNTs at 0.5µg/mL
increased Th1 cell proliferation, while suppressing it at 10µg/mL
(124).

NPs were also reported to affect DCs’ induction of T cells to
differentiate into Th17 cells. For example, carbon black induced
Th17-dependent inflammation in mice (130) and gold NPs of
50 nm (but not 10 nm) favored Th17 polarization (103). In
comparison, PLGA NP induced nasal tolerance and inhibited
T-cell differentiation into Th17 cells (131).
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To sum up, the uptake of NPs affects DCs’ functional
steps from maturation to induction of T cell differentiation
(Figure 2). The NPs’ physicochemical properties and exposure

scenarios govern the outcomes and intensity of these effects. The
interactions between NPs and DCs may favor or impair
the functions of DCs in immunotherapy. While some

FIGURE 2 | NPs affect DCs’ functions in different steps. The checkpoints of DC immunology are shown in this figure and the steps under the probable influence of

NPs are summarized. NPs affect the differentiation from haematopoietic stem cells (HSCs) to immature dendritic cells (iDCs) in the bone marrow (132). They change

the capability of DCs to uptake and process antigens in peripheral tissues. Some NPs enhance the homing capability of DCs into lymph node. In lymph node, NPs

affect antigen presentation capability and maturation of DCs including the release of pro-inflammatory cytokines. Finally, NPs lead to polarization of T cell differentiation

induced by DCs. Green arrows show an enhancement effect, while red arrows show an inhibition effect. Black arrows indicate the flow of immune cells.

FIGURE 3 | Proposed molecular mechanisms by which NPs affect DCs’ functions. NPs may interfere signal transduction (e.g., TLR-MyD88 signaling),

exosome-mediated process, intracellular redox balance, or calcium oscillation inside DCs to affect DCs’ functional process.
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molecular mechanisms have been proposed, more are yet to be
revealed.

POSSIBLE MECHANISMS: MOLECULAR
PATHWAYS IN DCs AFFECTED BY NPs

Understanding the immunomodulatorymechanisms is a premise
to optimize the functions of NPs for immunotherapy. Currently
available literature supports that the effects of NPs on DCs may
be triggered by binding with extracellular membrane receptors
or acting on intracellular molecules. Both interactions depend
heavily on the physicochemical properties, especially the surface
chemistry of NPs.

One possible mechanism by which NPs affect DCs’ fate
is via the interference of the intracellular signaling pathways
after recognition by cell surface receptor(s). Recent studies have
proposed TLR (Toll-like receptor)-MyD88 signaling (133) as
one of the most likely pathways that mediates NPs’ effects. This
mechanism was first identified by a micro-array analysis (134)
and was later supported by observations in MyD88-knockout
and TLR4-deficient DC models and mice (39). For example,
after treatment with γ-PGA NPs, the maturation of DCs with
MyD88- or TLR4-knockout but not wild-type was impaired.
In addition, in wild-type mice, NPs augmented OVA-induced
adaptive immune responses, including T cell activation and
anti-OVA antibody production, but these effects were largely
diminished in TLR4-deficient mice (39). In some studies, the
activity of NF-κB and MAPK signaling pathways, both of which
are downstream of TLR-MyD88 signaling, was found changed
by NPs treatment in DCs (135). These results further support
that TLR4-MyD88 is at least one of the signaling pathways that
mediated the effects of NPs (Figure 3).

Another reported mechanism is related to the generation
of exosomes. In vivo investigations showed that magnetic iron
oxide NPs (MIONs) stimulated the generation of exosomes in
the alveolar region of mice after respiratory exposure (125,
136). These exosomes transferred to the reticuloendothelial
and immune systems, where the maturation of DCs was
induced. Ex vivo studies indicated that when incubated
with MION-Exo, immature DCs underwent maturation, as
shown by the stimulated expression of MHC class II I-Ad,
MHC class I H-2Kd, CD80, and CD86, and differentiated
into DC1 subtype as shown by the increased secretion of
cytokine IL-12. In contrast, MIONs per se did not have
the same effects, suggesting that MIONs-induced exosomes
mediated the effects of MIONs in stimulating host immunity
(Figure 3).

Some other plausible mechanisms have also been proposed.
Based on the link between redox equilibrium with phenotypic
and functional maturation of DCs (137), oxidative stress may
play a key role for DC activation after treatment with NPs

including carbon blacks (CBs) (130, 138) and SWCNTs (124).
In one study, 10 nm gold NPs were found to inhibit the
change of Ca2+ oscillation during LPS-induced DC maturation
(103). However, blocking Ca2+ oscillation cannot totally impair
DCs’ maturation, suggesting that calcium oscillations-dependent
signaling is not the sole target of gold NPs in the regulation of
DCs’ maturation.

Till now, our knowledge about the ways NPs modulate
intracellular molecular pathways in DCs is very limit. Since
the interactions between NPs and intracellular molecules may
be dominated by the physicochemical properties, especially the
surface chemistry of NPs, future studies of the structure-activity
relationship will help rational design of NPs-based tools to
harness immunotherapeutic functions of DCs.

PERSPECTIVE

For successful DCs-based immunotherapy, three strategies have
been considered. First, to deliver tumor specific antigens to DCs
and to stimulate their maturation ex vivo followed by re-infusion
back to patients. Second, in vivo targeting of DCs with DC-
specific targeting molecules together with tumor antigens and
activators to induce cytotoxic T cell activation. Finally, in vivo
targeting of DCs augments tumor rejection inflammation in the
tumor microenvironment (9). For all of these strategies, NPs are
perfect antigen or adjuvant delivery carriers of high molecular
quantity and variety. In vivo manipulation can better mimic the
natural maturation process of DCs, thus can probably produce
safer and more efficient immunotherapeutic outcomes. In the
future, a deeper understanding of the mechanisms by which the
physicochemical properties of NPs affect DCs’ functions, such
as maturation, homing, antigen process, and induction of T cell
differentiation, will be required for safe and efficient DCs-based
cancer immunotherapy.
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