5,882 research outputs found
Superconductivity and Cobalt Oxidation State in Metastable Na(x)CoO(2-delta)*yH2O (x ~ 1/3; y ~ 4x)
We report the synthesis and superconducting properties of a metastable form
of the known superconductor NaxCoO2*yH2O (x ~ 1/3, y ~ 4x). Instead of using
the conventional bromine-acetonitrile mixture for sodium deintercalation, we
use an aqueous bromine solution. Using this method, we oxidize the sample to a
point that the sodium cobaltate becomes unstable, leading to formation of other
products if not controlled. This compound has the same structure as the
reported superconductor, yet it exhibits a systematic variation of the
superconducting transition temperature (Tc) as a function of time. Immediately
after synthesis, this compound is not a superconductor, even though it contains
appropriate amounts of sodium and water. The samples become superconducting
with low Tc values after ~ 90 h. Tc continually increases until it reaches a
maximum value (4.5 K) after about 260 h. Then Tc drops drastically, becoming
non-superconducting approximately 100 h later. Corresponding time-dependent
neutron powder diffraction data shows that the changes in superconductivity
exhibited by the metastable cobaltate correspond to slow formation of oxygen
vacancies in the CoO2 layers. In effect, the formation of these defects
continually reduces the cobalt oxidation state causing the sample to evolve
through its superconducting life cycle. Thus, the dome-shaped superconducting
phase diagram is mapped as a function of cobalt oxidation state using a single
sample. The width of this dome based on the formal oxidation state of cobalt is
very narrow - approximately 0.1 valence units wide. Interestingly, the maximum
Tc in NaxCoO2*yH2O occurs when the cobalt oxidation state is near 3.5. Thus, we
speculate that the maximum Tc occurs near the charge ordered insulating state
that correlates with the average cobalt oxidation state of 3.5.Comment: 22 pages, 9 figures, 1 tabl
Ignition of thermally sensitive explosives between a contact surface and a shock
The dynamics of ignition between a contact surface and a shock wave is investigated using a
one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and
high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing
and contrasting the solutions with those of the ignition process between a piston and a shock,
considered previously. The large activation energy asymptotic solutions are found to be qualitatively
different from the piston driven shock case, in that thermal runaway first occurs ahead of
the contact surface, and both forward and backward moving reaction waves emerge. These waves
take the form of quasi-steady weak detonations that may later transition into strong detonation
waves. For the finite activation energies considered in the numerical simulations, the results are
qualitatively different to the asymptotic predictions in that no backward weak detonation wave
forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance
of the contact surface. The above conclusions are relevant to gas phase equation of state models.
However, when a large polytropic index more representative of condensed phase explosives is used,
the large activation energy asymptotic and finite activation energy numerical results are found to
be in quantitative agreement
Effect of pulsed methylprednisolone on pain, in patients with HTLV-1-associated myelopathy
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an immune mediated myelopathy caused by the human T-lymphotropic virus type 1 (HTLV-1). The efficacy of treatments used for patients with HAM/TSP is uncertain. The aim of this study is to document the efficacy of pulsed methylprednisolone in patients with HAM/TSP. Data from an open cohort of 26 patients with HAM/TSP was retrospectively analysed. 1g IV methylprednisolone was infused on three consecutive days. The outcomes were pain, gait, urinary frequency and nocturia, a range of inflammatory markers and HTLV-1 proviral load. Treatment was well tolerated in all but one patient. Significant improvements in pain were: observed immediately, unrelated to duration of disease and maintained for three months. Improvement in gait was only seen on Day 3 of treatment. Baseline cytokine concentrations did not correlate to baseline pain or gait impairment but a decrease in tumour necrosis factor-alpha (TNF-α) concentration after pulsed methylprednisolone was associated with improvements in both. Until compared with placebo, treatment with pulsed methylprednisolone should be offered to patients with HAM/TSP for the treatment of pain present despite regular analgesia
Study of an advanced General Aviation Turbine Engine (GATE)
The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development
Thermodynamic entropy of a many body energy eigenstate
It is argued that a typical many body energy eigenstate has a well defined
thermodynamic entropy and that individual eigenstates possess thermodynamic
characteristics analogous to those of generic isolated systems. We examine
large systems with eigenstate energies equivalent to finite temperatures. When
quasi-static evolution of a system is adiabatic (in the quantum mechanical
sense), two coupled subsystems can transfer heat from one subsystem to another
yet remain in an energy eigenstate. To explicitly construct the entropy from
the wave function, degrees of freedom are divided into two unequal parts. It is
argued that the entanglement entropy between these two subsystems is the
thermodynamic entropy per degree of freedom for the smaller subsystem. This is
done by tracing over the larger subsystem to obtain a density matrix, and
calculating the diagonal and off-diagonal contributions to the entanglement
entropy.Comment: 18 page
Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue
This article surveys many standard results about the braid group with
emphasis on simplifying the usual algebraic proofs.
We use van der Waerden's trick to illuminate the Artin-Magnus proof of the
classic presentation of the algebraic mapping-class group of a punctured disc.
We give a simple, new proof of the Dehornoy-Larue braid-group trichotomy,
and, hence, recover the Dehornoy right-ordering of the braid group.
We then turn to the Birman-Hilden theorem concerning braid-group actions on
free products of cyclic groups, and the consequences derived by Perron-Vannier,
and the connections with the Wada representations. We recall the very simple
Crisp-Paris proof of the Birman-Hilden theorem that uses the Larue-Shpilrain
technique. Studying ends of free groups permits a deeper understanding of the
braid group; this gives us a generalization of the Birman-Hilden theorem.
Studying Jordan curves in the punctured disc permits a still deeper
understanding of the braid group; this gave Larue, in his PhD thesis,
correspondingly deeper results, and, in an appendix, we recall the essence of
Larue's thesis, giving simpler combinatorial proofs.Comment: 51`pages, 13 figure
- …