128 research outputs found
Sonic hedgehog (Shh) イデンシ ノ ハツゲン セイギョ ニ カカワル センショクタイ ダイナミクス
生命資源研究・支援センターシンポジウム (第5回 : 熊本大学生命資源研究・支援センターRIC/GTC棟講義室602 : 2009年3月3日15:20-16:40
Chromosomal Dynamics at the Shh Locus: Limb Bud-Specific Differential Regulation of Competence and Active Transcription
The expression of Sonic hedgehog (Shh) in mouse limb buds is regulated by a long-range enhancer 1 Mb upstream of the Shh promoter. We used 3D-FISH and chromosome conformation capture assays to track changes at the Shh locus and found that long-range promoter-enhancer interactions are specific to limb bud tissues competent to express Shh. However, the Shh locus loops out from its chromosome territory only in the posterior limb bud (zone of polarizing activity or ZPA), where Shh expression is active. Notably, while Shh mRNA is detected throughout the ZPA, enhancer-promoter interactions and looping out were only observed in small fractions of ZPA cells. In situ detection of nascent Shh transcripts and unstable EGFP reporters revealed that active Shh transcription is likewise only seen in a small fraction of ZPA cells. These results suggest that chromosome conformation dynamics at the Shh locus allow transient pulses of Shh transcription
Chromosomal Dynamics at the Shh Locus: Limb Bud-Specific Differential Regulation of Competence and Active Transcription
SummaryThe expression of Sonic hedgehog (Shh) in mouse limb buds is regulated by a long-range enhancer 1 Mb upstream of the Shh promoter. We used 3D-FISH and chromosome conformation capture assays to track changes at the Shh locus and found that long-range promoter-enhancer interactions are specific to limb bud tissues competent to express Shh. However, the Shh locus loops out from its chromosome territory only in the posterior limb bud (zone of polarizing activity or ZPA), where Shh expression is active. Notably, while Shh mRNA is detected throughout the ZPA, enhancer-promoter interactions and looping out were only observed in small fractions of ZPA cells. In situ detection of nascent Shh transcripts and unstable EGFP reporters revealed that active Shh transcription is likewise only seen in a small fraction of ZPA cells. These results suggest that chromosome conformation dynamics at the Shh locus allow transient pulses of Shh transcription
Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner
AbstractGasdermin (Gsdm) was originally identified as a candidate causative gene for several mouse skin mutants. Several Gsdm-related genes sharing a protein domain with DFNA5, the causative gene of human nonsyndromic hearing loss, have been found in the mouse and human genomes, and this group is referred to as the DFNA5–Gasdermin domain family. However, our current comparative genomic analysis identified several novel motifs distinct from the previously reported domain in the Gsdm-related genes. We also identified three new Gsdm genes clustered on mouse chromosome 15. We named these genes collectively the Gsdm family. Extensive expression analysis revealed exclusive expression of Gsdm family genes in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Further database searching revealed the presence of other related genes with a similar N-terminal motif. These results suggest that the Gsdm family and related genes have evolved divergent epithelial expression profiles
A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella
BackgroundXenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure.ResultsHere we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs.ConclusionsOur results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution
Two Loci Contribute to Age-Related Hearing Loss Resistance in the Japanese Wild-Derived Inbred MSM/Ms Mice
Yasuda S.P., Miyasaka Y., Hou X., et al. Two Loci Contribute to Age-Related Hearing Loss Resistance in the Japanese Wild-Derived Inbred MSM/Ms Mice. Biomedicines 10, 2221 (2022); https://doi.org/10.3390/biomedicines10092221.An MSM/Ms strain was established using Japanese wild mice, which exhibit resistance to several phenotypes associated with aging, such as obesity, inflammation, and tumorigenesis, compared to common inbred mouse strains. MSM/Ms strain is resistant to age-related hearing loss, and their auditory abilities are sustained for long durations. The age-related hearing loss 3 (ahl3) locus contributes to age-related hearing in MSM/Ms strain. We generated ahl3 congenic strains by transferring a genomic region on chromosome 17 from MSM/Ms mice into C57BL/6J mice. Although C57BL/6J mice develop age-related hearing loss because of the ahl allele of the cadherin 23 gene, the development of middle- to high-frequency hearing loss was significantly delayed in an ahl3 congenic strain. Moreover, the novel age-related hearing loss 10 (ahl10) locus associated with age-related hearing resistance in MSM/Ms strain was mapped to chromosome 12. Although the resistance effects in ahl10 congenic strain were slightly weaker than those in ahl3 congenic strain, slow progression of age-related hearing loss was confirmed in ahl10 congenic strain despite harboring the ahl allele of cadherin 23. These results suggest that causative genes and polymorphisms of the ahl3 and ahl10 loci are important targets for the prevention and treatment of age-related hearing loss
A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud
AbstractMammal–fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements
- …