228 research outputs found

    12(S)-hydroxyheptadeca-5Z, 8E, 10E–trienoic acid is a natural ligand for leukotriene B4 receptor 2

    Get PDF
    Activated blood platelets and macrophages metabolize prostaglandin H2 into thromboxane A2 and 12(S)-hydroxyheptadeca-5Z, 8E, 10E–trienoic acid (12-HHT) in an equimolar ratio through the action of thromboxane synthase. Although it has been shown that 12-HHT is abundant in tissues and bodily fluids, this compound has long been viewed as a by-product lacking any specific function. We show that 12-HHT is a natural ligand for leukotriene B4 (LTB4) receptor-2 (BLT2), a G protein–coupled receptor that was originally identified as a low-affinity receptor for LTB4. BLT2 agonistic activity in lipid fractions from rat small intestine was identified as 12-HHT using high-performance liquid chromatography and mass spectrometry. Exogenously expressed BLT2 in mammalian cells was activated by synthetic 12-HHT, as assessed by guanosine 5′-O-(3-thio) triphosphate binding, the activation of intracellular signaling pathways, and chemotaxis assay. Displacement analysis using [3H]LTB4 showed that 12-HHT binds to BLT2 with a higher affinity than LTB4. Lipid extracts from cyclooxygenase 1–deficient mice failed to activate BLT2. Bone marrow–derived mast cells (BMMCs) isolated from wild-type mice migrated toward a low concentration of 12-HHT, whereas BMMCs from BLT2-deficient mice did not. We conclude that 12-HHT is a natural lipid agonist of BLT2 in vivo and induces chemotaxis of mast cells

    Hepatocyte apoptosis is enhanced after ischemia/reperfusion in the steatotic liver

    Get PDF
    Liver steatosis is associated with organ dysfunction after hepatic resection and transplantation which may be caused by hepatic ischemia/reperfusion injury. The aim of the current study was to determine the precise mechanism leading to hepatocyte apoptosis after steatotic liver ischemia/reperfusion. Using a murine model of partial hepatic ischemia for 90 min, we examined the levels and pathway of apoptosis, and the peroxynitrite expression, serum alanine aminotransferase levels, and liver histology 1 and 4 h after reperfusion. In the steatotic liver, the peroxynitrite expression increased after ischemia/reperfusion. Significant hepatocyte apoptosis in the steatotic liver was seen after reperfusion, caused by upregulation of cleaved caspases 9 and 3, but not caspase 8. Serum alanine aminotransferase levels were elevated and histological examination revealed severe liver injury in the steatotic liver 4 h after reperfusion. In mice treated with aminoguanidine, ischemia/reperfusion-induced increases in serum alanine aminotransferase levels and apoptosis were significantly reduced in steatotic liver compared with mice treated with phosphate buffered saline. Survival of mice with steatotic livers significantly improved by treatment with aminoguanidine. Our data suggested that the steatotic liver is vulnerable to hepatic ischemia/reperfusion, leading to significant hepatocyte apoptosis by the mitochondrial permeability transition, and thereby resulting in organ dysfunction

    Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay

    Get PDF
    BACKGROUND: Congenital forms of hearing impairment can be caused by mutations in the estrogen related receptor beta (ESRRB) gene. Our initial linkage studies suggested the ESRRB locus is linked to high caries experience in humans. METHODS: We tested for association between the ESRRB locus and dental caries in 1,731 subjects, if ESRRB was expressed in whole saliva, if ESRRB was associated with the microhardness of the dental enamel, and if ESRRB was expressed during enamel development of mice. RESULTS: Two families with recessive ESRRB mutations and DFNB35 hearing impairment showed more extensive dental destruction by caries. Expression levels of ESRRB in whole saliva samples showed differences depending on sex and dental caries experience. CONCLUSIONS: The common etiology of dental caries and hearing impairment provides a venue to assist in the identification of individuals at risk to either condition and provides options for the development of new caries prevention strategies, if the associated ESRRB genetic variants are correlated with efficacy.Fil: Weber, Megan L.. University of Pittsburgh; Estados UnidosFil: Hsin, Hong Yuan. University of Pittsburgh; Estados UnidosFil: Kalay, Ersan. Karadeniz Technical University; TurquíaFil: Brožková, Dana Š. Charles University; República Checa. University Hospital Motol; República ChecaFil: Shimizu, Takehiko. Nihon University. School of Dentistry; JapónFil: Bayram, Merve. Medipol Istanbul University; TurquíaFil: Deeley, Kathleen. University of Pittsburgh; Estados UnidosFil: Küchler, Erika C.. University of Pittsburgh; Estados UnidosFil: Forella, Jessalyn. University of Pittsburgh; Estados UnidosFil: Ruff, Timothy D.. University of Pittsburgh; Estados UnidosFil: Trombetta, Vanessa M.. University of Pittsburgh; Estados UnidosFil: Sencak, Regina C.. University of Pittsburgh; Estados UnidosFil: Hummel, Michael. University of Pittsburgh; Estados UnidosFil: Briseño Ruiz, Jessica. University of Pittsburgh; Estados UnidosFil: Revu, Shankar K.. University of Pittsburgh; Estados UnidosFil: Granjeiro, José M.. Universidade Federal Fluminense; BrasilFil: Antunes, Leonardo S.. Universidade Federal Fluminense; BrasilFil: Antunes, Livia A.. Universidade Federal Fluminense; BrasilFil: Abreu, Fernanda V.. Universidade Federal Fluminense; BrasilFil: Costabel, Marcelo C.. Universidade Federal do Rio de Janeiro; BrasilFil: Tannure, Patricia N.. Veiga de Almeida University; Brasil. Salgado de Oliveira University; BrasilFil: Koruyucu, Mine. Istanbul University; TurquíaFil: Patir, Asli. Medipol Istanbul University; TurquíaFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mereb, Juan C.. Estudio Colaborativo Latino Americano de Malformaciones Congénitas; ArgentinaFil: Castilla, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orioli, Iêda M.. Universidade Federal do Rio de Janeiro; BrasilFil: Marazita, Mary L.. University of Pittsburgh; Estados UnidosFil: Ouyang, Hongjiao. University of Pittsburgh; Estados UnidosFil: Jayaraman, Thottala. University of Pittsburgh; Estados UnidosFil: Seymen, Figen. Istanbul University; TurquíaFil: Vieira, Alexandre R.. University of Pittsburgh; Estados Unido

    Leukotriene receptors (version 2020.3) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The leukotriene receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Leukotriene Receptors [34, 37]) are activated by the endogenous ligands leukotrienes (LT), synthesized from lipoxygenase metabolism of arachidonic acid. The human BLT1 receptor is the high affinity LTB4 receptor whereas the BLT2 receptor in addition to being a low-affinity LTB4 receptor also binds several other lipoxygenase-products, such as 12S-HETE, 12S-HPETE, 15S-HETE, and the thromboxane synthase product 12-hydroxyheptadecatrienoic acid. The BLT receptors mediate chemotaxis and immunomodulation in several leukocyte populations and are in addition expressed on non-myeloid cells, such as vascular smooth muscle and endothelial cells. In addition to BLT receptors, LTB4 has been reported to bind to the peroxisome proliferator activated receptor (PPAR) α [196] and the vanilloid TRPV1 ligand-gated nonselective cation channel [217]. The receptors for the cysteinyl-leukotrienes (i.e. LTC4, LTD4 and LTE4) are termed CysLT1 and CysLT2 and exhibit distinct expression patterns in human tissues, mediating for example smooth muscle cell contraction, regulation of vascular permeability, and leukocyte activation. There is also evidence in the literature for additional CysLT receptor subtypes, derived from functional in vitro studies, radioligand binding and in mice lacking both CysLT1 and CysLT2 receptors [37]. Cysteinyl-leukotrienes have also been suggested to signal through the P2Y12 receptor [96, 243, 272], GPR17 [57] and GPR99 [168]

    Leukotriene receptors in GtoPdb v.2023.1

    Get PDF
    The leukotriene receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Leukotriene Receptors [35, 38]) are activated by the endogenous ligands leukotrienes (LT), synthesized from lipoxygenase metabolism of arachidonic acid. The human BLT1 receptor is the high affinity LTB4 receptor whereas the BLT2 receptor in addition to being a low-affinity LTB4 receptor also binds several other lipoxygenase-products, such as 12S-HETE, 12S-HPETE, 15S-HETE, and the thromboxane synthase product 12-hydroxyheptadecatrienoic acid. The BLT receptors mediate chemotaxis and immunomodulation in several leukocyte populations and are in addition expressed on non-myeloid cells, such as vascular smooth muscle and endothelial cells. In addition to BLT receptors, LTB4 has been reported to bind to the peroxisome proliferator activated receptor (PPAR) α [201] and the vanilloid TRPV1 ligand-gated nonselective cation channel [223]. The crystal structure of the BLT1 receptor was initially determined in complex with selective antagonists [141, 231] and has recently been extended to the cryo-electron microscopy structure of LTB4-bound human BLT1 receptor at 2.91 Å resolution [389]. The receptors for the cysteinyl-leukotrienes (i.e. LTC4, LTD4 and LTE4) are termed CysLT1 and CysLT2 and exhibit distinct expression patterns in human tissues, mediating for example smooth muscle cell contraction, regulation of vascular permeability, and leukocyte activation. Quite recently, the the crystal structures of both receptors have been solved, the CysLT1 in complex with zafirlukast and pranlukast [203] and the CysLT2 in complex with three dual CysLT1/CysLT2 antagonists [122]. There is also evidence in the literature for additional CysLT receptor subtypes, derived from functional in vitro studies, radioligand binding and in mice lacking both CysLT1 and CysLT2 receptors [38]. Cysteinyl-leukotrienes have also been suggested to signal through the P2Y12 receptor [99, 251, 280], GPR17 [60] and GPR99 [173]

    Formylpeptide receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The formylpeptide receptors (nomenclature agreed by the NC-IUPHAR Subcommittee on the formylpeptide receptor family [185]) respond to exogenous ligands such as the bacterial product fMet-Leu-Phe (fMLP) and endogenous ligands such as annexin I , cathepsin G, amyloid β42, serum amyloid A and spinorphin, derived from β-haemoglobin

    Formylpeptide receptors in GtoPdb v.2021.2

    Get PDF
    The formylpeptide receptors (nomenclature agreed by the NC-IUPHAR Subcommittee on the formylpeptide receptor family [196]) respond to exogenous ligands such as the bacterial product fMet-Leu-Phe (fMLP) and endogenous ligands such as lipoxin A4 (LXA4), 15-epi-lipoxin A4, annexin I , cathepsin G, amyloid β42, serum amyloid A and spinorphin, derived from β-haemoglobin. FPR1 also serves as a plague receptor for selective destruction of human immune cells by Y. pestis [135]. The FPR1/2 agonists 'compound 17b' and 'compound 43' have shown cardiac protective functions [149, 64]
    • …
    corecore