2,036 research outputs found

    Hybrid biomedical intelligent systems

    Get PDF
    "Copyright © 2012 Maysam Abbod et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited."The purpose of this special issue is to promote research and developments of the best work in the field of hybrid intelligent systems for biomedical applications

    Type-2 fuzzy sets applied to multivariable self-organizing fuzzy logic controllers for regulating anesthesia

    Get PDF
    In this paper, novel interval and general type-2 self-organizing fuzzy logic controllers (SOFLCs) are proposed for the automatic control of anesthesia during surgical procedures. The type-2 SOFLC is a hierarchical adaptive fuzzy controller able to generate and modify its rule-base in response to the controller's performance. The type-2 SOFLC uses type-2 fuzzy sets derived from real surgical data capturing patient variability in monitored physiological parameters during anesthetic sedation, which are used to define the footprint of uncertainty (FOU) of the type-2 fuzzy sets. Experimental simulations were carried out to evaluate the performance of the type-2 SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for anesthesia (muscle relaxation and blood pressure) under signal and patient noise. Results show that the type-2 SOFLCs can perform well and outperform previous type-1 SOFLC and comparative approaches for anesthesia control producing lower performance errors while using better defined rules in regulating anesthesia set points while handling the control uncertainties. The results are further supported by statistical analysis which also show that zSlices general type-2 SOFLCs are able to outperform interval type-2 SOFLC in terms of their steady state performance

    THE STRUCTURE OF A HYDRATED 1-2 COMPLEX OF "ADENYLYL(3'-5')ADENOSINE-PROFLAVINE HEMISULFATE

    Get PDF
    The 1:2 complex (M r = 1410.28) between adenylyl(3'- 5')adenosine (ApA), C20H25NIoOIoP, and proflavine hemisulphate, 2C 13H ~2N~ - . SO42-, crystallizes with 16.5 water molecules in the space group P21212 and unit-cell parameters a = 32.157 (5), b = 21.450 (4) and c = 10.175 (1) A; V = 7018.4 A 3, Z = 4, d c = 1.33, d m = 1.32 Mgm -3,/z(Cu Ka) = 1.32 mm -~, F(000) = 2980. Crystal data were measured up to 20 = 120 ° with Cu Ka radiation. The structure was determined by a multisolution phase method and refined by a blockedmode full-matrix least-squares procedure. The final R factor is 0.118 for 3507 observed data. The dinucleoside phosphate, ApA, in this structure has a very unusual conformation which is not found in other oligonucleotide structures. The backbone of ApA is extended and each adenine ring is hydrogen bonded to another symmetry-related one forming an adenineadenine base pair. Each base pair is sandwiched by proflavine cations which also stack with each other. Solvent molecules lie in the continuous channels between columns of stacked heterocyclic rings

    Thermoelastic Damping in Micro- and Nano-Mechanical Systems

    Get PDF
    The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometer- and nanometer-scale electro-mechanical systems (MEMS and NEMS). The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener's well-known approximation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.Comment: 10 pages. Submitted to Phys. Rev.

    Quantum geometry and gravitational entropy

    Full text link
    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S^5 universes. In this sector we devise a "coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.Comment: 29 pages, 2 figures; references adde

    Coarse-Graining the Lin-Maldacena Geometries

    Full text link
    The Lin-Maldacena geometries are nonsingular gravity duals to degenerate vacuum states of a family of field theories with SU(2|4) supersymmetry. In this note, we show that at large N, where the number of vacuum states is large, there is a natural `macroscopic' description of typical states, giving rise to a set of coarse-grained geometries. For a given coarse-grained state, we can associate an entropy related to the number of underlying microstates. We find a simple formula for this entropy in terms of the data that specify the geometry. We see that this entropy function is zero for the original microstate geometries and maximized for a certain ``typical state'' geometry, which we argue is the gravity dual to the zero-temperature limit of the thermal state of the corresponding field theory. Finally, we note that the coarse-grained geometries are singular if and only if the entropy function is non-zero.Comment: 29 pages, LaTeX, 3 figures; v2 references adde
    • …
    corecore