The Structure of a Hydrated 1:2 Complex of Adenylyl(3'-5')adenosine-Proflavine Hemisulphate

By Huey-Sheng Shieh* and Helen M. Berman \dagger
The Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
and Stephen Neidle, \dagger Garry Taylor \ddagger and Mark Sanderson§
Department of Biophysics, Kings College, University of London, 26-29 Drury Lane, London WC2B 5RL, England

(Received 19 February 1981; accepted 27 July 1981)

Abstract

The 1:2 complex ($M_{r}=1410 \cdot 28$) between adenylyl(3^{\prime} 5^{\prime})adenosine (ApA), $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{P}$, and proflavine hemisulphate, $2 \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3}^{+} . \mathrm{SO}_{4}^{2-}$, crystallizes with $16 \cdot 5$ water molecules in the space group $P 2,2,2$ and unit-cell parameters $a=32 \cdot 157(5), b=21 \cdot 450$ (4) and $c=$ 10.175 (1) \AA § $, V=7018.4 \AA^{3}, Z=4, d_{c}=1.33, d_{m}=$ $1.32 \mathrm{Mgm}^{-3}, \mu(\mathrm{Cu} K \alpha)=1.32 \mathrm{~mm}^{-1}, \stackrel{c}{\mathrm{c}}(000)=2980$. Crystal data were measured up to $2 \theta=120^{\circ}$ with Cu $K a$ radiation. The structure was determined by a multisolution phase method and refined by a blockedmode full-matrix least-squares procedure. The final R factor is 0.118 for 3507 observed data. The dinucleoside phosphate, ApA, in this structure has a very unusual conformation which is not found in other oligonucleotide structures. The backbone of ApA is extended and each adenine ring is hydrogen bonded to another symmetry-related one forming an adenineadenine base pair. Each base pair is sandwiched by proflavine cations which also stack with each other. Solvent molecules lie in the continuous channels between columns of stacked heterocyclic rings.

Introduction

The study of small-molecule-nucleic-acid interactions has been concerned mostly with the intercalative mode of binding of planar chromophores between base pairs in double-helical DNA and RNA (Lerman, 1961; Neidle, 1979). However, these molecules, some of which are drugs, are also known to bind to single-

[^0]stranded nucleic acids such as synthetic polyribonucleotides (Dourlent \& Hélène, 1971) and naturally occurring tRNA (Urbanke, Römer \& Maass, 1973). The exact nature of that binding is not well understood at present because of the conformational flexibility of RNA. In this study, we present a high-resolution X-ray crystallographic analysis of the structure of proflavine complexed with the non-self-complementary dinucleoside phosphate, ApA (Neidle, Taylor, Sanderson, Shieh \& Berman, 1978). There have been many solution studies on this dinucleoside phosphate (Ts'o, Kondo, Schweizer \& Hollis, 1969; Lee, Ezra, Kondo, Sarma \& Danyluk, 1976; Evans \& Sarma, 1976) in an attempt to determine the extent of its conformational flexibility and whether or not it obeys the 'rigid nucleotide principle' (Yathindra \& Sundaralingam. 1973). It has been suggested (Berthod \& Pullman, 1973) that this principle pertains only in certain crystalline environments. We show in this study that in the presence of proflavine, the conformation of the dinucleoside phosphate has many unusual features.

Experimental

Deep-red rectangular prismatic crystals were grown from an aqueous solution of ApA and proffavine hemisulphate in a $1: 2$ ratio. The UV spectrum of a washed crystal clearly indicated complex formation. A crystal of size $0.45 \times 0.3 \times 0.2 \mathrm{~mm}$ was cut from a bigger crystal and sealed inside a capillary tube for all subsequent X-ray measurements.
Reflection data were collected in the $\theta-2 \theta$ scan mode with a variable scan rate using a Syntex $P 1$ automated diffractometer and graphite-monochromated $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418 \AA$). A total of 5695 unique reflections up to $2 \theta=120^{\circ}$ were obtained. Intensities were corrected for Lorentz and polarization effects; no absorption correction was applied. The standard deviation $\left(\sigma_{I}\right)$ of each intensity (I) was calculated based
on counter statistics and instrumental instability (Stout \& Jensen, 1968). 3507 reflections with $I \geq 2.33 \sigma_{I}$ were considered to be significant and used for structure refinement. The occurrence of so many unobserved reflections (2188) is probably due to the disordered water network discussed in a subsequent section.

Initial attempts to solve the structure with MULTAN (Main, Woolfson \& Germain, 1971) were unsuccessful. The structure was solved by an alternative directmethods approach. The phases of the $h k 0$ reflections were obtained by a multisolution method (Sheldrick, 1976) using 12 unknown phases in the starting set. The phases for the best set, as judged by a negative quartet test, were then used as starting points in a tangentformula phase expansion using the full threedimensional set of E values above 1.4. The resulting E map showed two full proflavine rings, a phosphate group and most of the atoms comprising the adenine bases. Two consecutive difference Fourier syntheses revealed the rest of the structure. In an independent manner, use of superposition methods on this problem also determined the structure. The P atom was located from the high-resolution Patterson map (using only those reflections with θ greater than 30°). A fourfold superposition of the Patterson functions on the four equivalent positions of the P atom revealed most of the structure.

This is a highly solvated structure. Lack of strong interactions among some of the solvent molecules makes them highly disordered. Therefore, the locations of these solvent molecules were difficult to determine and were sometimes ambiguous. A combination of least-squares refinement and difference Fourier syntheses was carried out step by step to determine unequivocally all 24 positions occupied by 16.5 water molecules and so complete the structure.

At one point, careful examination of the calculated and observed structure factors showed that the major discrepancies lay in the weak reflections and the low-resolution reflections. Therefore, 33 reflections with $F_{o}<16.5$ and 44 reflections with $\sin \theta / \lambda<0.10 \AA^{-1}$ were removed from the refinement. The weighting scheme used for the least-squares minimization was: w $=\left[\sigma^{2}(F)+0.005 F_{o}^{2}\right]^{-1}$. Because of the limitation of the computer-memory storage, the structure was divided into several blocks and all refinements were carried out in a blocked-mode full-matrix least-squares procedure. The atomic scattering factors and dispersion corrections were taken from International Tables for X-ray Crystallography (1974).

The positions and anisotropic temperature factors of the ApA and proflavine molecules were varied throughout all refinement cycles. The solvent molecules were divided into four categories:
(1) Sulphate ion: In order to account for the electron density, two idealized tetrahedra of O atoms with occupancy factor of 0.5 on each were placed around
the S atom. Their positions were fixed and their isotropic temperature factors were varied in the first few refinements and then fixed. The S atom was refined anisotropically.
(2) Primary water shell: $W P(01) . W P(02) \ldots W P(11)$ (where W and P stand for water and primary shell respectively).

There were 11 water molecules which made direct hydrogen bonds to either ApA or the proflavines. Their positions and anisotropic temperature factors were refined. The occupancy factors (G) were all assigned 1.0 except $W P(01)$, which was at a special position with $G=0 \cdot 5$. Judging from their rather high temperature factors, the water molecules $W P(07)$, $W P(08), W P(09)$, and $W P(10)$ may be disordered.
(3) Secondary (S) water shell: $W S(01), W S(02)$, $W S(03)$. Three water molecules hydrogen bond to water in the primary shell. They were given isotropic temperature factors with $G=0 \cdot 5$. Both their positions and temperature factors were varied.
(4) Disordered (D) water molecules: $W D(01)$, $W D(02), \ldots W D(10)$. Ten electron density peaks which did not make any unreasonable contacts with all other molecules and some short distances and unusual geometry among themselves were described as disordered water molecules. They are located in the weak polar region of the molecular channel. They were assigned isotropic temperature factors with $G=0.5$ except $W D(09)$ and $W D(10)$, which are at special positions, having $G=0.25$. Their positions and temperature factors were refined.

No attempt was made to locate H atoms. However, the positions of 30 non-hydrogen-bonded H atoms were calculated and included in the structure factor calculation.

The refinement converged at $R=0.106$ and $R_{w}=$ 0.139 for 3431 selected observed data, and $R=0.118$ and $R_{w}=0.171$ for all 3507 observed data.* The difference Fourier map at this point showed no electron density greater than $0.42 \mathrm{e}^{\AA^{-3}}$.

[^1]Fig. 1. A perspective view of two ApA-2proflavine complexes to illustrate the base pairing, hydrogen bonding and ring stacking. Dashed lines indicate hydrogen bonds. Distances are in \AA.

(a)

Cl'B

(c)

(d)

(f)

(e)

(g)

Fig. 2. Numbering system and molecular geometry, showing all covalent bond distances and angles involving non-hydrogen atoms. The 30 H atoms whose positions were calculated and which are included in the structure factor calculations are in the drawing. Those H atoms which participate in the protonation of $\mathrm{N}(10)$ positions on proflavine 1 and proflavine 2 and $\mathrm{N}(1)$ positions on adenine A and adenine B are not shown since they were never calculated. The average e.s.d. in bond lengths is $0.01 \AA$ and in angles is 1°. (a) Adenine A. (b) Adenine B. (c) Ribose phosphate backbone. (d) Proflavine 1. (e) Proflavine 2. (f) Disordered sulphate 1. (g) Disordered sulphate 2.

The molecular structure

Each asymmetric unit in the crystal consists of the dinucleoside phosphate ApA in an extended conformation, two proflavine molecules stacked below an adenine, a sulphate anion and several water molecules forming a highly hydrated $1: 2$ complex. Fig. 1 shows two complexes which interact with each other through base pairing. The atomic parameters are given in Table 1, distances and angles in Fig. 2, molecular planes in Table 2 and torsion angles in Fig. 3 and Table 3.

Fig. 3. Molecular configuration of ApA, illustrating the nomenclature of the conformation angles.

Table 1. Fractional coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses $\left(B_{e q}=\left\langle B_{i i}\right\rangle\right)$

(a) ApA molecule	x	y	z	$\begin{gathered} B_{\text {eq }} \text { or } \\ B_{\text {iso }} \end{gathered}$	$\mathrm{C}(2 P 2)$	$0 \cdot 1719$ (5)	0.5110 (6)	0.9732 (13)	6.9 (7)			
					$\mathrm{C}(3 P 2)$	0.2059 (5)	0.4726 (5)	0.9795 (12)	6.4 (7)			
					C(4P2)	$0 \cdot 1995$ (3)	0.4086 (8)	0.9724 (11)	6.7 (6)			
					C(5P2)	$0 \cdot 1093$ (3)	0.2304 (5)	0.9358 (11)	$5 \cdot 2$ (5)			
$\mathrm{N}(1 A)$	0.1237 (3)	0.5063 (6)	1.2993 (11)	7.7 (6)	C(6P2)	0.0706 (5)	0.2057 (7)	0.9239 (12)	7.8 (7)			
$\mathrm{C}(2 A)$	$0 \cdot 1623$ (4)	0.5309 (6)	1.3143 (15)	7.7 (8)	$\mathrm{C}\left(7 P_{2}\right)$	0.0329 (4)	0.2441 (7)	0.9244 (12)	6.9 (7)			
$\mathrm{N}(3 A)$	0.1994 (3)	$0 \cdot 5056$ (5)	1.3244 (10)	$6 \cdot 3$ (5)	C(8P2)	0.0363 (4)	0.3060 (9)	0.9385 (13)	8.2 (8)			
$\mathrm{C}(4 A)$	$0 \cdot 1952$ (3)	0.4434 (6)	1.3139 (11)	$5 \cdot 6$ (6)	$\mathrm{C}(9 \mathrm{P} 2)$	0.0845 (4)	0.4028 (6)	0.9528 (15)	7.6 (6)			
$\mathrm{C}(5 A)$	$0 \cdot 1584$ (3)	0.4096 (6)	1.2994 (11)	$5 \cdot 8(5)$	$\mathrm{N}(10 \mathrm{P} 2)$	0.1521 (3)	0.3223 (4)	0.9557 (8)	5.1 (4)			
$\mathrm{C}(6 A)$	0.1204 (3)	0.4444 (6)	1.2989 (11)	$5 \cdot 2$ (6)	$\mathrm{C}(11 P 2)$	0.1598 (3)	0.3812 (6)	0.9635 (11)	5.0 (5)			
$\mathrm{N}(6 \mathrm{~A})$	0.0839 (3)	0.4169 (6)	1.2878 (11)	7.3 (6)	$\mathrm{C}(12 \mathrm{P} 2)$	0.0786 (3)	0.3367 (8)	0.9462 (12)	$7 \cdot 1$ (6)			
$\mathrm{N}(7 A)$	$0 \cdot 1670$ (3)	0.3474 (5)	$1 \cdot 2871$ (9)	5.9 (5)	$\mathrm{C}(13 \mathrm{P} 2)$	0.1241 (4)	0.4273 (6)	0.9649 (12)	5.4 (5)			
$\mathrm{C}(8 A)$	0.2055 (3)	0.3439 (6)	1.2942 (13)	6.6 (6)	$\mathrm{C}(14 \mathrm{P} 2$)	0.1132 (3)	0.2973 (6)	0.9464 (11)	$5 \cdot 2$ (5)			
$\mathrm{N}(9 A)$	0.2261 (3)	$0 \cdot 4015$ (5)	$1 \cdot 3103$ (9)	5.4 (5)	N (15P2)	0.2465 (4)	0.4942 (4)	$0.9898(10)$	8.0 (5)			
$\mathrm{C}\left(1^{\prime} A\right)$	$0 \cdot 2702$ (3)	0.4124 (6)	1.3087 (11)	5.5 (5)	$\mathrm{N}(16 \mathrm{P}$)	0.0639 (4)	0.1427 (6)	0.9154 (12)	9.4 (7)			
$\mathrm{O}\left(1^{\prime} A\right)$	$0 \cdot 2859$ (2)	0.4054 (4)	$1 \cdot 1822$ (7)	5.4 (4)								
$\mathrm{C}\left(2^{\prime} A\right)$	0.2961 (4)	0.3741 (6)	1.4030 (12)	$6 \cdot 2(5)$	(c) Solvent molecules (the otherwise)		occupany,	, is $\frac{1}{2}$ unless	indicated			
$\mathrm{O}\left(2^{\prime} A\right)$	0.3264 (2)	0.4083 (5)	1.4631 (8)	8.2 (5)								
$\mathrm{C}\left(3^{\prime} A\right)$	0.3140 (4)	0.3253 (6)	1.3087 (13)	$6 \cdot 2$ (5)								
$\mathrm{O}\left(3^{\prime} A\right)$	0.3531 (3)	0.2990 (5)	1.3510 (9)	$8 \cdot 5$ (5)	$W P(01)$	0.000	0.000	0.615 (3)	14.7 (13)			
$\mathrm{C}\left(4^{\prime} A\right.$)	0.3205 (3)	0.3613 (5)	1.1818 (11)	4.8 (5)	$W P(02) \dagger$	0.223 (1)	0.247 (1)	0.953 (1)	11.7 (4)			
$\mathrm{C}\left(5^{\prime} A\right)$	0.3193 (4)	0.3268 (7)	1.0584 (12)	$7 \cdot 3$ (7)	$W P(03) \dagger$	0.433 (1)	0.312 (1)	1.226 (2)	18.3 (10)			
$\mathrm{O}\left(5^{\prime} A\right)$	0.3191 (2)	0.3671 (4)	0.9493 (8)	5.7 (4)	$W P(04)^{\dagger}$	0.396 (1)	0.166 (1)	0.923 (2)	19.7 (6)			
P	0.3200 (1)	0.3400 (2)	0.8032 (3)	5.6 (1)	$W P(05) \dagger$	$0 \cdot 230$ (1)	0.222 (1)	0.582 (2)	16.4 (12)			
$\mathrm{O}(1 A)$	0.3157 (2)	0.3941 (4)	0.7158 (7)	6.5 (4)	$W^{W}(06) \dagger$	0.314 (1)	0.164 (1)	0.911 (2)	17.6 (7)			
$\mathrm{O}(2 A)$	0.2909 (2)	0.2837 (5)	0.7903 (9)	$8 \cdot 3$ (5)	$W P(07)^{\dagger}$	0.343 (1)	0.530 (1)	1.389 (5)	38.9 (25)			
$\mathrm{C}\left(1^{\prime} B\right)$	0.4547 (3)	0.2833 (4)	0.7282 (11)	$4 \cdot 2$ (4)	$W P(08) \dagger$	0.162 (1)	0.023 (1)	1.206 (5)	52.6 (19)			
$\mathrm{O}\left(1^{\prime} B\right)$	0.4483 (2)	0.3225 (3)	0.6193 (8)	$5 \cdot 3$ (4)	$W P(09) \dagger$	0.266 (1)	0.591 (1)	1.348 (6)	46.5 (36)			
$\mathrm{C}\left(2^{\prime} B\right)$	0.4375 (3)	0.3178 (5)	0.8439 (10)	$4 \cdot 0$ (5)	$W P(10)^{\dagger}$	0.133 (2)	$0 \cdot 040$ (2)	0.926 (9)	74.3 (44)			
$\mathrm{O}\left(2^{\prime} B\right)$	0.4299 (3)	0.2815 (4)	0.9539 (8)	$7 \cdot 0$ (5)	$W P(11) \dagger$	0.337 (1)	0.204 (1)	1.506 (3)	26.9 (14)			
$\mathrm{C}\left(3^{\prime} \mathrm{B}\right)$	$0 \cdot 4008$ (3)	0.3539 (5)	0.7890 (12)	5.4 (5)	$W S(01)$	0.449 (2)	0.486 (2)	1.035 (5)	22.8 (17)*			
$\mathrm{O}\left(3^{\prime} B\right)$	0.3655 (2)	0.3113 (3)	0.7916 (8)	5.4 (4)	$W S(02)$	0.475 (1)	0.405 (1)	1.197 (3)	15.1 (9)			
$\mathrm{C}\left(4^{\prime} B\right)$	0.4126 (3)	0.3619 (6)	0.6394 (13)	5.7 (6)	$W S(03)$	0.187 (2)	0.116 (3)	0.875 (7)	26.4 (21)			
$\mathrm{C}\left(5^{\prime} B\right)$	$0 \cdot 4256$ (4)	0.4321 (7)	0.6229 (21)	9.7 (9)	$W D(01)$	0.367 (2)	0.159 (3)	1.204 (7)	29.4 (24)			
$\mathrm{O}\left(5^{\prime} \mathrm{B}\right)$	0.4557 (3)	0.4523 (4)	0.7103 (15)	$10 \cdot 6$ (7)	$W D(02)$	0.419 (1)	0.131 (2)	1.251 (4)	$16 \cdot 1$ (10)			
$\mathrm{N}(1 B)$	0.6030 (3)	0.3735 (5)	0.7518 (10)	6.5 (5)	$W D(03)$	0.459 (1)	0.073 (1)	1.239 (3)	14.4 (8)			
$\mathrm{C}(2 B)$	0.5665 (3)	0.4010 (5)	0.7512 (13)	$6 \cdot 2$ (6)	$W D(04)$	0.482 (1)	0.037 (2)	1.462 (4)	15.4 (10)			
$\mathrm{N}(3 B)$	0.5293 (3)	0.3759 (4)	0.7429 (10)	$5 \cdot 6$ (5)	$W D(05)$	0.489 (1)	0.023 (1)	1.224 (3)	14.1 (9)			
$\mathrm{C}(4 B)$	0.5310 (3)	0.3129 (5)	0.7384 (9)	4.4 (5)	$W D(06)$	0.442 (3)	0.093 (5)	1.416 (9)	$34 \cdot 5$ (35)			
$\mathrm{C}(5 \mathrm{~B})$	0.5675 (3)	0.2780 (6)	0.7409 (10)	$5 \cdot 5$ (5)	$W D(07)$	0.063 (1)	0.591 (1)	1.211 (2)	$10 \cdot 1$ (5)			
C(6B)	$0 \cdot 6049$ (3)	0.3081 (5)	0.7351 (11)	$5 \cdot 2$ (5)	WD(08)	0.023 (1)	0.535 (1)	1.183 (1)	4.9 (3)			
$\mathrm{N}(6 B)$	0.6421 (3)	0.2779 (5)	0.7425 (10)	$6 \cdot 3$ (5)	WD(09) \ddagger	0.000	0.500	1.196 (6)	17.5 (19)			
$\mathrm{N}(7 B)$	0.5570 (2)	0.2139 (4)	0.7326 (9)	4.8 (4)	WD(10) \ddagger	0.000	0.500	1.060 (8)	21.6 (23)			
$\mathrm{C}(8 B)$	0.5181 (3)	0.2155 (5)	0.7298 (10)	4.5 (5)	$\mathrm{S}(04) \ddagger$	0.249 (1)	$0 \cdot 148$ (1)	1.230 (1)	14.3 (14)			
$\mathrm{N}(9 B)$	$0 \cdot 4992$ (2)	0.2707 (4)	0.7357 (9)	$4 \cdot 1$ (4)	O(1SO4')	0.250	0.104	1.302	14.4			
					O(2SO4')	$0 \cdot 300$	0.169	1.210	26.5			
(b) Proflavine cations					$\mathrm{O}\left(3 \mathrm{SO}^{\prime}\right)$	0.224	0.205	1.263	12.7			
					O(4SO4')	0.222	0.128	1.142	34.3			
$\mathrm{C}\left(1 P_{1}\right)$	0.1240 (4)	0.4491 (7)	0.6281 (13)	7.2 (6)	$\mathrm{O}(\mathrm{ISO4)}$	0.242	0.196	1.269	16.7			
$\mathrm{C}(2 \mathrm{P} 1)$	0.1631 (4)	0.4735 (6)	0.6366 (13)	6.0 (6)	$\mathrm{O}(2 \mathrm{SO} 4)$	0.277	$0 \cdot 112$	1.308	20.2			
C(3P1)	0.1966 (3)	0.4375 (6)	0.6405 (10)	5.4 (5)	$\mathrm{O}(3 \mathrm{SO} 4)$	0.266	0.139	1.076	25.7			
C(4P1)	$0 \cdot 1948$ (4)	0.3728 (6)	0.6341 (11)	5.8 (5)	$\mathrm{O}(4 \mathrm{SO} 4)$	$0 \cdot 209$	$0 \cdot 116$	1.244	$16 \cdot 3$			
C(5P1)	$0 \cdot 1149$ (4)	$0 \cdot 1843$ (6)	0.5963 (14)	$6 \cdot 6$ (6)								
C(6P1)	0.0764 (4)	$0 \cdot 1566$ (5)	0.5862 (12)	$6 \cdot 0$ (7)	* Values for $W S(01)$ to $W D(10)$ and $\mathrm{O}\left(1 \mathrm{SO}^{\prime}\right)$ to $\mathrm{O}(4 \mathrm{SO4})$ are							
C(7P1)	0.0391 (4)	0.1875 (6)	0.5874 (12)	6.4 (6)	$B_{i s p}$. \dagger Occupancy 1. \ddagger Occupancy $\frac{1}{4}$.							
$\mathrm{C}(8 \mathrm{P} 1)$	0.0399 (4)	0.2511 (9)	0.5909 (14)	7.6 (8)								
$\mathrm{C}(9 P 1)$	0.0809 (3)	0.3510 (7)	0.6077 (11)	6.3 (6)								
$\mathrm{N}(10 \mathrm{P} 1)$	0.1525 (3)	0.2838 (5)	0.6083 (9)	5.6 (5)								

The base pairs

There are two adenine rings in the molecule, the 3^{\prime} adenine being designated A and the 5^{\prime} adenine B. Because the crystals were obtained at a low pH , the ApA most probably exists as a zwitterion with a

Table 2. Deviations (\AA) of atoms from the least-squares planes through the indicated atoms (average e.s.d. is $0.01 \AA$)

Adenine atoms	Adenine A	Adenine B	Adenine atoms	Adenine A	Ade- nine B
N(1)	-0.05	0.01	N(7)	-0.02	-0.01
C(2)	-0.03	0.01	C(8)	-0.03	-0.00
N(3)	0.03	-0.02	N(9)	-0.01	0.02
C(4)	0.03	-0.01	N(6)	0.07*	-0.04*
C(5)	0.03	0.01	C(1')	-0.14*	-0.02*
C(6)	0.05	-0.01			
R.m.s. deviation	0.03	0.01		0.03	0.01
Ribose atoms	$\begin{aligned} & 3^{\prime}-\mathrm{Ri}- \\ & \text { bose } \end{aligned}$	$\begin{aligned} & 5^{\prime}-\mathrm{Ri}- \\ & \text { bose } \end{aligned}$	Ribose atoms	$\begin{aligned} & 3^{\prime}-\mathrm{Ri}- \\ & \text { bose } \end{aligned}$	5^{\prime}-Ri- bose
C(1')	-0.02	0.25*	C(3')	-0.56*	$0 \cdot 0$
O(1')	0.02	$0 \cdot 0$	C(4')	-0.01	0.0
$\mathrm{C}\left(2^{\prime}\right)$	0.01	-0.25*			
R.m.s. deviation	0.01	0.0		0.01	$0 \cdot 0$
Proflavine atoms	Proflavine 1	Proflavine 2	Proflavine atoms	Proflavine 1	Proflavine 2
C(1)	0.00	-0.02	C(9)	-0.02	-0.00
C(2)	-0.01	-0.05	N(10)	-0.05	0.02
C(3)	0.02	0.00	C(11)	0.01	0.02
C(4)	$0 \cdot 03$	0.01	C(12)	-0.00	0.02
C(5)	0.00	-0.01	C(13)	-0.01	0.03
C(6)	-0.00	-0.04	C(14)	-0.01	0.01
C(7)	0.04	-0.03	N(15)	0.03*	0.02*
C(8)	-0.00	0.04	N(16)	-0.01*	-0.05*
R.m.s. deviation	0.02	-0.03		$0 \cdot 02$	-0.03

* Atoms not involved in least-squares-plane calculations.

Table 3. Conformation angles (${ }^{\circ}$) (e.s.d.'s $1-2^{\circ}$)
Back bone and glycosidic bonds

$\chi\left(5^{\prime}\right)$	$\mathrm{C}(8 B)-\mathrm{N}(9 B)-\mathrm{C}\left(1^{\prime} B\right)-\mathrm{O}\left(1^{\prime} B\right)$	240°
$\psi\left(5^{\prime}\right)$	$\mathrm{C}\left(5^{\prime} B\right)-\mathrm{C}\left(4^{\prime} B\right)-\mathrm{C}\left(3^{\prime} B\right)-\mathrm{O}\left(3^{\prime} B\right)$	143
α	$\mathrm{C}\left(4^{\prime} B\right)-\mathrm{C}\left(3^{\prime} B\right)-\mathrm{O}\left(3^{\prime} B\right)-\mathrm{P}$	262
β	$\mathrm{C}\left(3^{\prime} B\right)-\mathrm{O}\left(3^{\prime} B\right)-\mathrm{P}-\mathrm{O}\left(5^{\prime} A\right)$	291
γ	$\mathrm{O}\left(3^{\prime} B\right)-\mathrm{P}-\mathrm{O}\left(5^{\prime} A\right)-\mathrm{C}\left(5^{\prime} A\right)$	29 I
δ	$\mathrm{P}-\mathrm{O}\left(5^{\prime} A\right)-\mathrm{C}\left(5^{\prime} A\right)-\mathrm{C}\left(4^{\prime} A\right)$	177
ε	$\mathrm{O}\left(5^{\prime} A\right)-\mathrm{C}\left(5^{\prime} A\right)-\mathrm{C}\left(4^{\prime} A\right)-\mathrm{C}\left(3^{\prime} A\right)$	171
$\psi\left(3^{\prime}\right)$	$\mathrm{C}\left(5^{\prime} A\right)-\mathrm{C}\left(4^{\prime} A\right)-\mathrm{C}\left(3^{\prime} A\right)-\mathrm{O}\left(3^{\prime} A\right)$	85
$\chi\left(3^{\prime}\right)$	$\mathrm{O}\left(1^{\prime} A\right)-\mathrm{C}\left(1^{\prime} A\right)-\mathrm{N}(9 A)-\mathrm{C}(8 A)$	71

Ribose, endocyclic bonds

τ_{0}	$\mathrm{C}\left(4^{\prime} B\right)-\mathrm{O}\left(1^{\prime} B\right)-\mathrm{C}\left(1^{\prime} B\right)-\mathrm{C}\left(2^{\prime} B\right)$	-28
τ_{1}	$\mathrm{O}\left(1^{\prime} B\right)-\mathrm{C}\left(1^{\prime} B\right)-\mathrm{C}\left(2^{\prime} B\right)-\mathrm{C}\left(3^{\prime} B\right)$	34
τ_{2}	$\mathrm{C}\left(1^{\prime} B\right)-\mathrm{C}\left(2^{\prime} B\right)-\mathrm{C}\left(3^{\prime} B\right)-\mathrm{C}\left(4^{\prime} B\right)$	-26
τ_{3}	$\mathrm{C}\left(2^{\prime} B\right)-\mathrm{C}\left(3^{\prime} B\right)-\mathrm{C}\left(4^{\prime} B\right)-\mathrm{O}\left(1^{\prime} B\right)$	10
τ_{4}	$\mathrm{C}\left(3^{\prime} B\right)-\mathrm{C}\left(4^{\prime} B\right)-\mathrm{O}\left(1^{\prime} B\right)-\mathrm{C}\left(1^{\prime} B\right)$	11
$\tau_{0^{\prime}}$	$\mathrm{C}\left(4^{\prime} A\right)-\mathrm{O}\left(1^{\prime} A\right)-\mathrm{C}\left(1^{\prime} A\right)-\mathrm{C}\left(2^{\prime} A\right)$	3
$\tau_{1^{\prime}}$	$\mathrm{O}\left(1^{\prime} A\right)-\mathrm{C}\left(1^{\prime} A\right)-\mathrm{C}\left(2^{\prime} A\right)-\mathrm{C}\left(3^{\prime} A\right)$	-24
$\tau_{2^{\prime}}$	$\mathrm{C}\left(1^{\prime} A\right)-\mathrm{C}\left(2^{\prime} A\right)-\mathrm{C}\left(3^{\prime} A\right)-\mathrm{C}\left(4^{\prime} A\right)$	35
$\tau_{3^{\prime}}$	$\mathrm{C}\left(2^{\prime} A\right)-\mathrm{C}\left(3^{\prime} A\right)-\mathrm{C}\left(4^{\prime} A\right)-\mathrm{O}\left(1^{\prime} A\right)$	-34
$\tau_{4^{\prime}}$	$\mathrm{C}\left(3^{\prime} A\right)-\mathrm{C}\left(4^{\prime} A\right)-\mathrm{O}\left(1^{\prime} A\right)-\mathrm{C}\left(1^{\prime} A\right)$	20

negative phosphate group and a protonated adenine much as was found in the structures of $\mathrm{ApA}^{+} \mathrm{pA}^{+}$ (Suck, Manor \& Saenger, 1976) and UpA ${ }^{+}$(Sussman, Seeman, Kim \& Berman, 1972). Since the distances and angles (Fig. 2) have average estimated standard deviations of $0.01 \AA$ and 1° respectively, it is not possible to utilize them to assign definitely the protonation site. Consideration of the hydrogenbonding environment (see discussion later) suggests that it is the $\mathrm{N}(1)$ of adenine B which bears the positive charge. The distances and angles in both adenine rings are unremarkable with the exception of the $\mathrm{C}(8)-\mathrm{N}(7)$ distances in both rings which are shorter and the $\mathrm{N}(9)-\mathrm{C}(8)-\mathrm{N}(7)$ angle in ring B which is greater than the corresponding values found in other adenine structures.

The adenine rings are each planar (Table 2) within $\pm 0.05 \AA$. Adenine A forms hydrogen bonds to adenine B of a symmetry-related molecule via $\mathrm{N}(6)$ and $\mathrm{N}(7)$. This hydrogen-bonding pattern was first proposed for acid poly $\left(\mathrm{A}^{+}\right)$(Rich, Davis, Crick \& Watson, 1961) and occurs in a variety of adenine-containing crystal structures including UpA ${ }^{+}$(Sussman et al., 1972) and $\mathrm{ApA}^{+} \mathrm{pA}^{+}$(Suck et al., 1976). The average deviation of the plane of the base pairs is $0.2 \AA$ and the tilt between bases 5°.

The conformation of ApA

The dinucleoside phosphate adopts an extended conformation (Fig. 3) which results from some unusual values in the torsion angles of the nucleoside segments; this is in contrast to the situation observed in other extended dinucleoside phosphates where only the torsion angles of phosphodiester linkage differ from the normal helical conformations (Sussman et al., 1972).

The two sugars differ from one another. The 5^{\prime} ribose has a $\mathrm{C}\left(1^{\prime}\right)$-exo, $\mathrm{C}\left(2^{\prime}\right)$-endo conformation with a pseudorotation parameter $\left(P_{s}\right)$ (Altona \& Sundaralingam, 1972) of 142°. The glycosidic torsion angle (χ) is -120° and is thus syn; the free 5^{\prime}-hydroxyl forms a hydrogen bond with $\mathrm{N}(3)$ of the adenine perhaps stabilizing this unusual conformation. While the syn conformation is not theoretically disallowed as has been shown by energy calculations (Pullman \& Saran, 1976), it has been observed in very few crystals of nucleosides (Suck, Saenger \& Vorbrüggen, 1972; Tavale \& Sobell, 1970; Bugg \& Thewalt, 1969; Subramanian, Madden \& Bugg, 1973). The only syn-containing oligonucleotide structures are alternating guanosine-cytidine ones such as the recently reported left-handed helical hexamer $\alpha(\mathrm{CpGpCpGpCpG})$ (Wang et al., 1979). The other ribose in the complex is in the $\mathrm{C}\left(3^{\prime}\right)$-endo conformation ($P_{s}=14^{\circ}$). χ is in the high-anti (71°) conformation as has been observed in the structures of other drug-dinucleoside phosphate complexes (Neidle
et al., 1977; Berman et al., 1979; Tsai, Jain \& Sobell, 1977; Jain, Tsai \& Sobell, 1977). The C(2^{\prime})-endo ($3^{\prime} \rightarrow$ $\left.5^{\prime}\right) \mathrm{C}\left(3^{\prime}\right)$-endo ordering of the mixed sugar pucker occurs in the crystal structure of the complex between ApU and 9 -aminoacridine (Seeman, Day \& Rich, 1975), the only other non-intercalated complex where structure has been reported. In the self-complementary ribodinucleoside intercalative complexes with mixed puckering the order is $\mathrm{C}\left(3^{\prime}\right)$-endo- $\mathrm{C}\left(2^{\prime}\right)$-endo.

Some significant conformational angles are presented in Table 3. The α angle of the molecule is 262°. As has been observed in the structures of pTpT (Camerman, Fawcett \& Camerman, 1976) and tRNA (Jack, Ladner \& Klug, 1976; Holbrook, Sussman, Warrant \& Kim, 1978) this high value can be correlated with $\mathrm{C}\left(2^{\prime}\right)$-endo sugar puckering. When sugars are $\mathrm{C}\left(3^{\prime}\right)$-endo the value of α has always been found to be about 210° (Arnott \& Hukins, 1969). The value of ε is 171° and together with the increased α is responsible for stretching apart the planes of the bases from the usual $3.4 \AA$ to $6.3 \AA$. The trans value for this ε angle is not usually found in 5^{\prime} nucleotides although there is no a priori theoretical basis for this angle to be always gauche (Pullman \& Saran, 1976). The trans value has been observed in dGMP (Young, Tollin \& Wilson, 1974), the modified nucleotide azaUMP (Saenger \& Suck, 1973), and in a few residues of tRNA. Curiously, the otherwise variable β and γ angles have almost precisely the values found in RNA 11 (Arnott, Hukins \& Dover, 1972), as does δ.

Fig. 4. The stacking patterns of the molecular complex. (a) Proflavine 1/base pair. (b) Base pair/proflavine 2. (c) Proflavine 2/proflavine 1 .

Table 4. Hydrogen bonds and short intermolecular contacts (\AA)

Positional parameters of the O atoms of the $\mathrm{SO}_{4}{ }^{2-}$ ion were not refined. Distances involving these atoms are marked with an asterisk.
(a) Intramolecular hydrogen bonds

$\mathrm{N}(3 B) \cdots \mathrm{O}\left(5^{\prime} B\right)$	$2.90(1)$	
$(b) \mathrm{ApA} \rightarrow \mathrm{ApA}$		
$\mathrm{N}(6 A) \cdots \mathrm{N}\left(7 B^{1}\right)$	$2.94(2)$	$\mathrm{N}(7 A) \cdots \mathrm{N}\left(6 B^{\mathrm{i}}\right)$

$\mathrm{O}\left(2^{\prime} A\right) \cdots \mathrm{O}\left(1 A^{\text {ii }}\right) \quad 2 \cdot 61(1$
(c) ApA proflavine, sulphate and water molecules

$\mathrm{N}(1 A) \cdots W D(07)$	2.81 (3)	$\mathrm{O}(2 A) \cdots W P(02)$	2.85 (1)
$\mathrm{N}(3 A) \cdots W P(09)$	2.83 (3)	$\mathrm{O}(2 A) \cdots W^{\prime} P(05)$	$3 \cdot 17$ (2)
$\mathrm{C}(8 A) \cdots \mathrm{O}\left(3 \mathrm{SO} 4^{\prime}\right)$	3.05 (1)*	$\mathrm{O}(2 A) \cdots W P(06)$	2.94 (2)
$\mathrm{O}\left(1^{\prime} A\right) \cdots \mathrm{N}(15 \mathrm{P} 2)$	3.01 (1)	$\mathrm{O}\left(2^{\prime} B\right) \cdots W P(03)$	2.85 (2)
$\mathrm{O}\left(2^{\prime} A\right) \cdots W P(07)$	2.77 (3)	$\mathrm{O}\left(2^{\prime} B\right) \cdots W P(04)$	2.72 (3)
$\mathrm{O}\left(3^{\prime} A\right) \cdots W P(03)$	2.88 (2)	$N(1 B) \cdots W P\left(08^{\prime \prime}\right)$	2.95 (3)
$\mathrm{O}\left(3^{\prime} A\right) \cdots W P(11)$	2.63 (3)	$\mathrm{N}(6 B) \cdots \mathrm{O}\left(3 \mathrm{SO}^{4}{ }^{\prime \prime}\right)$	$2 \cdot 66$ (1)*
$\mathrm{O}(1 A) \cdots \mathrm{N}(15 P 1)$	3.04 (1)	$\mathrm{N}(6 \mathrm{~B}) \cdots \mathrm{O}\left(4 \mathrm{SO}^{\text {i }}\right.$)	3.13 (1)*
$\mathrm{O}(1 A) \cdots W P\left(08^{\text {(iI) }}\right)$	2.97 (3)		

(d) Proflavine \rightarrow sulphate and water molecules

$\mathrm{N}(10 P 1) \cdots W P(05)$	2.84 (2)	$\mathrm{N}(16 \mathrm{P} 1) \cdots W P\left(07^{\circ}\right)$	2.96 (3)
$\mathrm{N}(15 P 1) \cdots \mathrm{O}\left(15 \mathrm{~S} 4^{\prime \prime 1}\right.$)	3.04 (1)*	$\mathrm{N}(10 P 2) \cdots W P(02)$	2.79 (1)
$\mathrm{N}(15 \mathrm{PI}) \cdots \mathrm{O}\left(2 \mathrm{SO}_{4}{ }^{\text {(1) }}\right)$	3.20 (1)*	$\mathrm{N}(15 \mathrm{P} 2) \cdots \mathrm{O}\left(3 \mathrm{SO} 4{ }^{\text {iii }}\right)$	3.20 (1)*
$\mathrm{N}(16 P 1) \cdots W P(01)$	$3 \cdot 20$ (1)	$N(16 P 2) \cdots W^{\prime} P(10)$	$3 \cdot 13$ (6)
(e) Sulphate \rightarrow water molecules			
$\mathrm{O}\left(2 \mathrm{SO} 4^{\prime}\right) \cdots$. WP(06)	3.08 (2)*	$\mathrm{O}(3 \mathrm{SO} 4) \cdots W P(02)$	2.97 (1)*
$\mathrm{O}\left(2 \mathrm{SO} 4^{\prime}\right) \cdots W D(01)$	2.17 (6)*	$\mathrm{O}(3 \mathrm{SO} 4) \cdots W P(06)$	2.34 (2)*
$\mathrm{O}\left(4 \mathrm{SO} 4{ }^{\prime}\right) \cdots W P(02)$	$3 \cdot 20$ (1)*	$\mathrm{O}(4 \mathrm{SO} 4) \cdots W P(08)$	2.53 (3)*

$\mathrm{O}\left(4 \mathrm{SO} 4^{\prime}\right) \cdots W P(08) \quad 3.04(3)^{*}$
$O(4 \mathrm{SO} 4) \cdots W P(08) \quad 2.53(3)^{*}$

$\mathrm{O}\left(4 \mathrm{SO} 4^{\prime}\right) \cdots W S(03)$	$2.95(7)^{*}$

(f) Normal water \rightarrow water molecules

$W P(01) \cdots W S\left(02^{\prime}\right)$	$2.91(3)$	$W P(07) \cdots W P(09)$	$2.83(4)$
$W P(02) \cdots W S(03)$	$3 \cdot 14(7)$	$W P(08) \cdots W P(10)$	$3.02(10)$
$W P(03) \cdots W S(02)$	$2.43(3)$	$W P(09) \cdots W S\left(03^{\text {iii }}\right)$	$2 \cdot 78(9)$
$W P(04) \cdots W S(06)$	$2 \cdot 64(3)$	$W P(10) \cdots W S\left(01^{\prime}\right)$	$2.91(9)$
$W P(04) \cdots W D(01)$	$3 \cdot 01(7)$	$W P(10) \cdots W S(03)$	$2.44(9)$
$W P(04) \cdots W D\left(07^{v}\right)$	$2.49(3)$	$W S(01) \cdots W S(02)$	$2 \cdot 54(6)$
$W P(05) \cdots W P\left(09^{\prime}\right)$	$2.90(3)$		

(g) Disordered water \rightarrow disordered water molecules

$W D(03) \cdots W D(04)$	$2.51(5)$	$W D(05) \cdots W D(06)$	$2 \cdot 89(10)$
$W D(03) \cdots W D\left(05^{\text {(i }}\right)$	$2.66(4)$	$W D(05) \cdots W D\left(10^{\text {i. }}\right)$	$2.95(9)$
$W D(04) \cdots W D(05)$	$2.45(5)$	$W D(07) \cdots W D(09)$	$2.82(3)$
$W D(04) \cdots W D\left(05^{\text {(I }}\right)$	$2.95(5)$		

(h) Short contacts ($\leq 2 \cdot 2 \AA$) in group 1 disordered water molecules $\mid W D(01)$ to $W D(06) \mid$

$W D(01) \cdots W D(02)$	1.84 (7)	$W D(03) \cdots W D(06)$	1.93 (10)
$W D(02) \cdots W D(03)$	1.79 (5)	$W D(04) \cdots W D\left(04^{\text {vi }}\right)$	1.96 (6)
$W D(02) \cdots W D(06)$	2.01 (10)	$W D(04) \cdots W D(06)$	1.82 (11)
$W D(03) \cdots W D(05)$	1.45 (4)	$W D(05) \cdots W D\left(05^{\text {® }}\right.$)	1.21 (4)
(i) Short contacts ($\leq 2.2 \AA$) in group 2 disordered water molecules $\mid W D(07)$ to $W D(10) \mid$			
$W D(07) \cdots W D(08)$	1.78 (3)	$W D(08) \cdots W D(10)$	1.64 (6)
$W D(08) \cdots W D\left(08^{\text {¹] }}\right)$	2.11(3)	$W D(09) \cdots W D(10)$	$1 \cdot 38$ (10)
$W D(08) \cdots W D(09)$	1.06 (2)		
(j) Short stacking contacts ($\leq 3.40 \mathrm{~A}$)			
$\mathrm{N}(1 A) \cdots \mathrm{C}\left(1 P_{2}\right)$	3.39 (2)	$\mathrm{C}(2 B) \cdots \mathrm{N}\left(16 P 1^{\text {vii] }}\right)$	$3 \cdot 37$ (2)
$\mathrm{C}(4 A) \cdots \mathrm{C}\left(3 P 1^{\text {il }}\right.$)	$3 \cdot 33$ (2)	$\mathrm{C}(4 B) \cdots \mathrm{C}\left(7 P^{\text {viii }}\right)$	$3 \cdot 33$ (2)
$\mathrm{C}(6 A) \cdots \mathrm{C}\left(1 P 1^{\text {II }}\right.$)	3.35 (2)	$\mathrm{C}(6 \mathrm{~B}) \cdots \mathrm{C}\left(5 \mathrm{P}^{\text {iV }}\right.$)	$3 \cdot 35$ (2)

Symmetry code
None x, y, z
(i) $-0.5+x, 0.5-y, 2-z \quad$ (v) $0.5-x,-0.5+y, 2-z$
$\begin{array}{ll}\text { (ii) } x, v 1+z & \text { (vi) } 1-x,-y, z\end{array}$
(iii) $0 \cdot 5-x \cdot 0 \cdot 5+r \cdot 2-z$
(vii) $-x, 1-1,2$
(iv) $0 \cdot 5+x \cdot 0 \cdot 5-y \cdot 2-z$
(viii) $0.5+x \cdot 0 \cdot 5-9.1-z$

The proflavine cations

Both proflavine cations are essentially planar and are protonated at $\mathrm{N}(10)$, as found in the crystal structure of proflavine hemisulphate (Jones \& Neidle, 1975). They are stacked almost directly on top of one another, $3.4 \AA$ apart. Unlike the proflavine molecules in the complex with CpG (Neidle et al., 1977; Berman et al., 1979) which are at an angle of 97° to each other the angle between the stacked proflavines in this crystal is 0° (Fig. $4 c$). The proflavines are symmetrically stacked above and below an adenine-adenine base pair (Fig. $4 a, b)$. The central rings of the proflavines are not involved in this stacking. In this sense the stacking is similar to that found in the intercalated portion of CpG-proflavine (Berman et al., 1979).

The crystal structure

Proflavine-ApA associations

As shown in Fig. 1 each adenine A base-pairs to adenine B in a symmetrically related molecule to form an extended chain of dinucleoside molecules. The proflavine cations stack above and below each base pair. The sequence of stacked rings is thus proflavine, proflavine, base pair, proflavine, proflavine, \ldots in the \mathbf{c} direction (Fig. 4). $\mathrm{N}(15)$ of proflavine 1 hydrogen bonds to $\mathrm{O}(1 A)$ of a phosphate group and $\mathrm{N}(15)$ of proflavine 2 hydrogen bonds to the ribosyl $\mathrm{O}\left(1^{\prime}\right)$ (Table 4). Amino-phosphate oxygen hydrogen bonds were also observed in CpG-proflavine (Berman et al., 1979). The crystal structure consists of infinite columns of heterocyclic stacked planes extending along c linked by hydrophilic ribose-phosphate groups, forming zigzag chains along a (Fig. 5). Along ce trans-lationally-related dinucleosides are connected by a hydrogen bond, $\mathrm{O}\left(2^{\prime} A\right)$ of the 5^{\prime} ribose to the $\mathrm{O}(1)$ phosphate O atom (Table 4).

The solvent structure

In addition to the 1:2 ApA-proflavine complex the asymmetric unit contains a disordered sulphate ion and 24 water molecules. A view of the structure projected onto the $a b$ plane is shown in Fig. 5. Fig. 6 presents a simple extended schematic representation of this projection. All the solvent molecules reside in channels between infinite chains of stacked molecules. The major role of solvent in this structure is to hold molecules together between the chains, and to provide additional interactions which aid in maintaining the layers of stacked molecules.

The molecular stacking block, shown in Fig. 6, approximates a rectangular column. Since the proflavines are stacked parallel to each other and the sugar puckering is different in base A and base B, the

Fig. 5. A view of the structure perpendicular to the $a b$ plane. Dashed lines indicate hydrogen bonds. The outlines of molecular stacking columns, chain connections, and water channels are shown. Two 2_{z} axes which are perpendicular to the paper are denoted by \downarrow. The origin of the unit cell is on the 2_{z} axis coinciding with water molecule P1. Water molecules are named as in Table 1 except that the prefix W is omitted.

Fig. 6. A schematic representation of the crystal structure. This is an expansion of Fig. 5. The unit-cell outline and the nomenclature of stacking-block faces are shown. The three distinct channel regions are marked (1), (2) and (3). The lines connecting the blocks represent the sugar phosphate chain as shown in Fig. 5. The filled circles represent the sulphate ions.
distribution of polarity on the faces of the rectangular columns is not homogeneous. The four boundaries of the stacking column are designated as faces A, B, C, and D (Fig. 6). A and B are wide faces. Face A is much more polar than face B as all the polar atoms $\mathrm{N}(10)$, $\mathrm{N}(15)$, and $\mathrm{N}(16)$ of the proflavines lie on face A. The exposure of $\mathrm{N}(3)$ of adenine A on face C makes it more polar than face D, where $\mathrm{N}(3)$ of adenine B is essentially buried in the sugar domain.

The unique part of the channel structure in the crystal is confined by two diad axes parallel to the z axis $\left(2_{2}\right)$ as shown in Fig. 5. It consists of three distinct regions. The first one (1) is delimited by two weak polar faces D and D^{\prime}, which are related to one another by the first twofold axis. The space related in this area is not

Fig. 7. The solvent network in the crystal structure. This view is obtained by rotating 90° along the horizontal axis of Fig. 5. The hydrogen donors or acceptors of the ApA or proflavine molecules are shown as shaded atoms. The symbol + denotes positive charge, with δ - for partial negative charge.
large. Three water molecules, $W P(01), W S(01)$, and $W S(02)$ occupy the unique portion of this region. They loosely interact with each other and with $\mathrm{N}(16)$ of proflavine 1. The next region (2) has both strong polar faces A and C forming a highly polar channel side. The majority of solvent molecules are in this region. The sulphate ion is in the middle of the channel with its disordered O atoms fully utilized to bind to ApA, the proflavine and other solvent molecules. WS(03) also occupies a pivotal position. Although it does not interact with ApA or proflavines, it connects the sulphate ion, $W P(02), W P(10)$ and $W P(09)$ together and also weakly binds to $W P(07)$. The third region (3) of the channel is confined by two weakly polar and long faces, B and B^{\prime}, related to one another by the second twofold axis. Due to its weak polar surrounding and ample space, all water molecules in this region are very disordered. $W D(01), W D(02), W D(03), W D(04)$, $W D(05)$, and $W D(06)$ form one group, while $W D(07)$, $W D(08), W D(09)$, and $W D(10)$ forms the other. These two groups are connected to each other through the interaction $W D(05) \cdots W D(10)(2 \cdot 95 \AA)$, and through the bridge molecule $W P(04) \mid W D(01) \cdots W P(04)$ $3.01 \AA ; W D(07) \ldots W P(04), 2.49 \AA]$. The attachments of $W D(01)$ to the sulphate ion and $W D(07)$ to $\mathrm{N}(1)$ of base A hold these two groups in place. The continuity of a channel is constructed through the 2_{z} axes as described above. There are no direct contacts among the solvent molecules in different channels. However, as seen on the top right of Fig. 5, one channel interacts with another via hydrogen bonding among water molecules with $O\left(3^{\prime} A\right)$ and $O\left(2^{\prime} B\right)$.

The solvent network is shown in Fig. 7. All the solvent molecules, except $W P(11)$, which had to go through $O\left(2^{\prime} A\right)$ to interact with other solvent molecules, are hydrogen-bonded to each other. Fig. 7 also
shows the particular pattern of the charge balance in this structure. Positively charged $\mathrm{N}(1 B)$ interacts with negatively charged $O(4)$ and $O\left(4^{\prime}\right)$ of the sulphate ion and $\mathrm{O}(1 A)$ of the phosphate group via $W P(08) . \mathrm{N}(10)^{+}$ of proflavine 1 interacts with $\mathrm{O}(2 A)^{-}$via $W P(05)$ while $\mathrm{N}(10)^{+}$of proflavine 2 interacts with $\mathrm{O}\left(4^{\prime}\right)$ and $\mathrm{O}(3)$ of the sulphate ion and $\mathrm{O}(2 A)^{-}$via $W P(02)$. Thus, all the charged species in this structure interact with one another via bridges of neutral water molecules.

This work was supported by grants from NIH GM-21589, CA-22780, CA-06927, RR-05539, and an appropriation from the Commonwealth of Pennsylvania (to HMB), from NATO (to SN and HMB) and from the Cancer Research Campaign (SP 1384) to SN.

References

Altona, C. \& Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.
Arnott, S. \& Hukins, D. W. L. (1969). Nature (London), 224, 886-888.
Arnott, S., Hukins, D. W. L. \& Dover, S. D. (1972). Biochem. Biophys. Res. Commun. 48, 1392-1399.
Berman, H. M., Stallings, W., Carrell. H. L.. Glusker, J. P., Neidle, S., Taylor, G. \& Achari, A. (1979). Biopolymers, 18, 2405-2429.
Berthod, H. \& Pullman, B. (1973). FEBS Lett. 30, 231-235.
Bugg, C. E. \& Thewalt, U. (1969). Biochem. Biophys. Res. Соттии. 37, 623-629.
Camerman, N., Fawcett, J. K. \& Camerman, A. (1976). J. Mol. Biol. 107, 601-621.

Dourlent, M. \& Hélène, C. (1971). Eur. J. Biochem. 23, 86-95.
Evans, F. E. \& Sarma, R. H. (1976). Nature (London), 263, 567-572.
Holbrook, S. R., Sussman, J. L., Warrant, R. W. \& Kim, S. -H. (1978). J. Mol. Biol. 123. 631-660.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Jack, A., Ladner, J. E. \& Klug, A. (1976). J. Mol. Biol. 108, 619-649.
Jain, S. C., Tsal, C. C. \& Sobell, H. M. (1977). J. Mol. Biol. 114, 317-331.
Jones, A. \& Neidle, S. (1975). Acta Cryst. B31, 13241333.

Lee, C. H., Ezra, F. S.. Kondo. N. S., Sarma, R. H. \& Danyluk, S. S. (1976). Biochemistry, 15, 3627-3639.
Lerman, L. S. (1961). J. Mol. Biol. 3. 18-30.
Main, P., Woolfson, M. M. \& Germain, G. (1971). mULTAN. A Computer Program for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Department of Physics. Univ. of York, England.
Neidle, S. (1979). Prog. Med. Chem. 16, 151-221.
Neidle, S., Achari, A., Taylor, G. L., Berman, H. M., Carrell, H. L., Glusker, J. P. \& Stallings. W. C. (1977). Nature (London), 269, 304-309.

Neidle, S., Taylor, G., Sanderson, M., Shieh, H.-S. \& Berman, H. M. (1978). Nucleic Acids Res. 2, 4417-4422.
Pullman, B. \& Saran, A. (1976). Prog. Nucleic Acid Res. Mol. Biol. 18, 215-323.
Rich, A., Davies, D. R., Crick, F. H. C. \& Watson, J. D. (1961). J. Mol. Biol. 3, 71-86.

Saenger, W. \& Suck, D. (1973). Nature (London), 242, 610-612.
Seeman, N. C., Day, R. O. \& Rich, A. (1975). Nature (London), 253, 324-326.
Sheldrick, G. M. (1976). SHELX. A system of crystallographic programs. Univ. of Cambridge, England.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, pp. 456-458. New York: Macmillan.
Subramanian, E., Madden, J. J. \& Bugg, C. E. (1973). Biochem. Biophys. Res. Commun. 50, 691-696.
Suck, D., Manor, P. C. \& Saenger, W. (1976). Acta Cryst. B32, 1727-1737.

Suck, D., Saenger, W. \& Vorbrüggen, H. (1972). Nature (London), 235, 333-334.
Sussman, J. L., Seeman, N. C., Kim, S.-H. \& Berman, H. M. (1972). J. Mol. Biol. 66, 403-421.

Tavale, S. A. \& Sobell, H. M. (1970). J. Mol. Biol. 48, 109-123.
Tsai, C. C., Jain, S. C. \& Sobell, H. M. (1977). J. Mol. Biol. 114, 301-315.
Ts'o, P. O. P., Kondo, N. S., Schweizer, M. P. \& Hollis, D. P. (1969). Biochemistry, 8, 997-1029.

Urbanke, C., Römer, R. \& Maass, G. (1973). Eur. J. Biochem. 33, 511-516.
Wang, A. H.J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., Van Boom, J. H., Van der Marel, G. \& Rich, A. (1979). Nature (London), 282, 680-686.
Yathindra, N. \& Sundaralingham, M. (1973). Biopolymers, 12, 297-314.
Young, D. W., Tollin, P. \& Wilson, H. R. (1974). Acta Cryst. B30, 2012-2018.

Conformational Analysis of Synthetic Androgens. VI. Structure and Crystal Packing of 17β-Hydroxy-7 β-methyl-4,14-androstadien-3-one Monohydrate

By William L. Duax and Douglas C. Rohrer
Medical Foundation of Buffalo, Inc., 73 High Street, Buffalo, New York 14203, USA
and Albert Segaloff
Alton Ochsner Medical Foundation, New Orleans, Louisiana 70121, USA

(Received 13 January 1981; accepted 23 July 1981)

Abstract

The X-ray crystal structure of 17β-hydroxy- 7β-methyl-4,14-androstadien-3-one monohydrate was investigated to determine the influence of the 7β-methyl substituent on the overall conformation. The steroid hydrate $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ crystallizes in the monoclinic space group $P 2_{1}$ with $Z=2, a=10.868$ (6), $b=8.472$ (4), $c=9.838$ (4) $\AA, \beta=98.29(5)^{\circ}, \lambda=1.5418 \AA, T=291$ $\mathrm{K}, V=896 \cdot 3 \mathrm{~A}^{3}, \rho_{x}=1 \cdot 18 \mathrm{Mg} \mathrm{m}^{-3} \cdot R=4.3 \%$ for 1972 reflections. Subtle conformational differences between 17β-hydroxy- 7β-methyl-4,14-androstadien-3one, 17β-hydroxy- 4,14 -androstadien- 3 -one and 17β -hydroxy- 7β-methyl-4,14-estradien-3-one are attributable to differences in methyl substitution. While the overall shapes of these molecules are very similar, the molecular packings in the crystals of these steroids are entirely different. In contrast to this, the crystal structure of 17β-hydroxy- 7β-methyl-4,14-androstadien-

0567-7408/82/020531-04\$01.00

3-one is isomorphous with those of the monohydrates of the most active endogenous androgens, testosterone and dihydrotestosterone. The order of hydrogen-bond lengths and their orientations are remarkably similar in these three structures. Since the hydrophobic surfaces of the molecule are significantly different, the crystal packing in these isomorphs appears to be a function of hydrate formation and the directionally specific hydrogen bonding mediated by the water molecules in the crystals.

Introduction

The structure determination was undertaken as part of a study of substituent influence on the conformations of modified androgenic steroids. The title compound has approximately 10% of the androgenicity of testosterone when administered parenterally in the castrate c 1982 International Union of Crystallography

[^0]: * Present address: Physical Science Center, Monsanto Company, 800 N. Lindberg Boulevard, St. Louis, MO 63166, USA.
 \dagger Authors to whom correspondence should be addressed.
 \ddagger Present address: Molecular Biology Laboratory, Birkbeck College, Malet Street, London WC1E 7HU, England.
 § Present address: Department of Organic Chemistry, State University, 2300 Leiden, The Netherlands.

[^1]: * List of structure factors and anisotropic temperature parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36329 (27 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography. 5 Abbey Square. Chester CHI 2HU, England.

