21,157 research outputs found
Bi-Directional Relativistic Jets of the Radio Galaxy 1946+708: Constraints on the Hubble Constant
We present measurements of bi-directional motions in the jets of the radio
galaxy 1946+708 at z=0.101. This is a Compact Symmetric Object with striking
S-symmetry. Sensitive 15 GHz observations reveal a compact component at the
center of symmetry with a strongly inverted spectrum, that we identify as the
core. From five 4.9 GHz observations spread over 4 years we have determined the
velocities of four compact jet components. If simple kinematic models can be
applied then the inclination of the source and the bulk jet velocity can be
directly determined for any assumed value of the Hubble constant. Conversely,
the measurements already place constraints on the Hubble constant, and we show
how further observations of 1946+708 can yield an increasingly accurate
determination of H_0.Comment: in press at ApJ Letters, 12 page LaTex document includes 5 postscript
figure
Improving the capabilities and use of strategic decision making tools.
Recent research has shown that a substantial proportion of local authorities do not use models for strategy formulation or scheme design and appraisal. Models were perceived to be unable to reflect the range of policy instruments which local authorities now use; and were seen as too complex for local authority staff and stakeholders to use themselves. To overcome these issues the MARS model has been enhanced to provide a transparent and easy to use tool with a flight simulator front-end. This paper describes the model along with improvements to the representation of public transport by inclusion of quality and crowding factors and the incorporation of urban heavy rail
The two sided parsec scale structure of the Low Luminosity Active Galactic Nucleus in NGC 4278
We present new Very Long Baseline Interferometry observations of the LINER
galaxy NGC 4278. The observations were taken with the Very Long Baseline Array
(VLBA) and a single antenna of the Very Large Array (VLA) at 5 GHz and 8.4 GHz
and have a linear resolution of <0.1 pc. Our radio data reveal a two sided
structure, with symmetric S-shaped jets emerging from a flat spectrum core. We
fit the jet brightness with gaussian components, which we identify from a
previous observation taken five years before. By comparing the positions of the
components in the two epochs, we measure motions between 0.45 +/- 0.14 and 3.76
+/- 0.65 mas, corresponding to apparent velocities < 0.2c, and to ages in the
range 8.3 - 65.8 years. Assuming that the radio morphology is intrinsically
symmetric and its appearance is governed by Doppler beaming effects, we find
that NGC4278 has mildly relativistic jets (beta ~ 0.75), closely aligned to the
line-of-sight (2 degrees < theta < 4 degrees). Alternatively, the source could
be oriented at a larger angle and asymmetries could be related to the jet
interaction with the surrounding medium. We also present new simultaneous VLA
observations between 1.4 and 43 GHz, and a 5 GHz light curve between 1972 and
2003. The radio spectrum can be fit by a relatively steep power-law (alpha =
0.54). We find significant variability at 5 GHz. All these arguments indicate
that the radiation from NGC 4278 is emitted via the synchrotron process by
relativistic particles accelerated by a supermassive black hole. Despite a much
lower power, this is the same process that takes place in ordinary radio loud
AGNs.Comment: 29 pages, 9 figures, ApJ accepte
Morphology of passivating organic ligands around a nanocrystal
Semiconductor nanocrystals are a promising class of materials for a variety
of novel optoelectronic devices, since many of their properties, such as the
electronic gap and conductivity, can be controlled. Much of this control is
achieved via the organic ligand shell, through control of the size of the
nanocrystal and the distance to other objects. We here simulate ligand-coated
CdSe nanocrystals using atomistic molecular dynamics, allowing for the
resolution of novel structural details about the ligand shell. We show that the
ligands on the surface can lie flat to form a highly anisotropic 'wet hair'
layer as opposed to the 'spiky ball' appearance typically considered. We
discuss how this can give rise to a dot-to-dot packing distance of one ligand
length since the thickness of the ligand shell is reduced to approximately
one-half of the ligand length for the system sizes considered here; these
distances imply that energy and charge transfer rates between dots and nearby
objects will be enhanced due to the thinner than expected ligand shell. Our
model predicts a non-linear scaling of ligand shell thickness as the ligands
transition from 'spiky' to 'wet hair'. We verify this scaling using TEM on a
PbS nanoarray, confirming that this theory gives a qualitatively correct
picture of the ligand shell thickness of colloidal quantum dots.Comment: 17 Pages, 9 Figure
Recommended from our members
Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing
As evidence of climate change strengthens, knowledge of its regional implications becomes an urgent need for decision making. Current understanding of regional precipitation changes is substantially limited by our understanding of the atmospheric circulation response to climate change, which to a high degree remains uncertain. This uncertainty is reflected in the wide spread in atmospheric circulation changes projected in multimodel ensembles, which cannot be directly interpreted in a probabilistic sense. The uncertainty can instead be represented by studying a discrete set of physically plausible storylines of atmospheric circulation changes. By mining CMIP5 model output, here we take this broader perspective and develop storylines for Southern Hemisphere (SH) midlatitude circulation changes, conditioned on the degree of global-mean warming, based on the climate responses of two remote drivers: the enhanced warming of the tropical upper troposphere and the strengthening of the stratospheric polar vortex. For the three continental domains in the SH, we analyse the precipitation changes under each storyline. To allow comparison with previous studies, we also link both circulation and precipitation changes with those of the Southern Annular Mode. Our results show that the response to tropical warming leads to a strengthening of the midlatitude westerly winds, whilst the response to a delayed breakdown (for DJF) or strengthening (for JJA) of the stratospheric vortex leads to a poleward shift of the westerly winds and the storm tracks. However, the circulation response is not zonally symmetric and the regional precipitation storylines for South America, South Africa, South Australia and New Zealand exhibit quite specific dependencies on the two remote drivers, which are not well represented by changes in the Southern Annular Mode
Recommended from our members
Constraints on wave drag parameterization schemes for simulating the quasi-biennial oscillation. Part II: combined effects of gravity waves and equatorial planetary waves
This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag. In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible
Recommended from our members
Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere, and its implications for the troposphere
Previous studies have highlighted an important organising influence of the seasonal Southern Hemisphere stratospheric vortex breakdown on the large-scale stratospheric and tropospheric circulation. The present study extends this work by considering the statistical predictability of the stratospheric vortex breakdown event, using re-analysis data. Perturbations to the winter stratospheric vortex are shown to persist into austral spring, and to lead to a shift in the statistics of the breakdown event during austral summer. This is interpreted as evidence for the potential for seasonal predictability of the vortex breakdown event in the stratosphere. Coupled variability between the stratosphere and troposphere is then considered. The semi-annual oscillation of the tropospheric mid-latitude jet is discussed and evidence for a connection between this behaviour and variations in the stratosphere is presented. Based on this connection, an argument is made for the concomitant potential for seasonal predictability in the troposphere, assuming knowledge of the stratospheric initial state. Combining these various results, a non-stationary, regime-based perspective of large-scale extra-tropical Southern Hemisphere circulation variability between late winter and summer is proposed. The implications of this perspective for some previous studies involving Annular Modes of the circulation are discussed. In particular, the long Annular Mode timescales during austral spring and summer should not be interpreted as an increased persistence of perturbations to some slowly varying seasonal cycle, but instead reflect a phase shift of the seasonal cycle induced by stratospheric variability
Detection of Optical Synchrotron Emission from the Radio Jet of 3C279
We report the detection of optical and ultraviolet emission from the
kiloparsec scale jet of the well-known quasar 3C~279. A bright knot, discovered
in archival V and U band {\it Hubble Space Telescope} Faint Object Camera
images, is coincident with a peak in the radio jet \sim0.6\arcsec from the
nucleus. The detection was also confirmed in Wide Field Planetary Camera-2
images. Archival Very Large Array and MERLIN radio data are also analyzed which
help to show that the high-energy optical/UV continuum, and spectrum, are
consistent with a synchrotron origin from the same population of relativistic
electrons responsible for the radio emission.Comment: 6 pages, 3 figs. accepted for publication in ApJL with minor
revision
Recommended from our members
Comment on "Tropospheric temperature response to stratospheric ozone recovery in the 21st century" by Hu et al. (2011)
Abstract. In a recent paper Hu et al. (2011) suggest that
the recovery of stratospheric ozone during the first half of
this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of
greenhouse gases, with the effects being most pronounced in
Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of CMIP3 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We suggest that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models
- …
