24,417 research outputs found
Testing the Gravitational Weak Equivalence Principle in the Standard-Model Extension with Binary Pulsars
The Standard-Model Extension provides a framework to systematically
investigate possible violation of the Lorentz symmetry. Concerning gravity, the
linearized version was extensively examined. We here cast the first set of
experimental bounds on the nonlinear terms in the field equation from the
anisotropic cubic curvature couplings. These terms introduce body-dependent
accelerations for self-gravitating objects, thus violating the gravitational
weak equivalence principle (GWEP). Novel phenomena, that are absent in the
linearized gravity, remain experimentally unexplored. We constrain them with
precise binary-orbit measurements from pulsar timing, wherein the high density
and large compactness of neutron stars are crucial for the test. It is the
first study that seeks GWEP-violating signals in a fully anisotropic framework
with Lorentz violation.Comment: 7 pages, 1 figure; accepted by PR
Short-Time Decoherence and Deviation from Pure Quantum States
In systems considered for quantum computing, i.e., for control of quantum
dynamics with the goal of processing information coherently, decoherence and
deviation from pure quantum states, are the main obstacles to fault-tolerant
error correction. At low temperatures, usually assumed in quantum computing
designs, some of the accepted approaches to evaluation of relaxation mechanisms
break down. We develop a new general formalism for estimation of decoherence at
short times, appropriate for evaluation of quantum computing architectures.Comment: 9 pages in plain Te
Recommended from our members
Rheo-processing of an alloy specifically designed for semi-solid metal processing on the Al-Mg-Si system
Semi-solid metal (SSM) processing is a promising technology for forming alloys and composites to near-net shaped products. Alloys currently used for SSM processing are mainly conventional aluminium cast alloys. This is an obstacle to the realisation of full potential of SSM processing, since these alloys were originally designed for liquid state processing and not for semi-solid state processing. Therefore, there is a significant need for designing new alloys specifically for semi-solid state processing to fulfil its potential. In this study, thermodynamic calculations have been carried out to design alloys based on the Al-Mg-Si system for SSM processing via the ‘Rheo-route’. The suitability of a selected alloy composition has been assessed in terms of the criteria considered by the thermodynamic design process, mechanical properties and heat treatability. The newly designed alloy showed good processability with rheo-processing in terms of good control of solid fraction during processing and a reasonably large processing window. The mechanical property variation was very small and the alloy showed good potential for age hardening by T5 temper heat treatment after rheo-processing
A Reverse-Shock Model for the Early Afterglow of GRB 050525A
The prompt localization of gamma-ray burst (GRB) 050525A by {\em Swift}
allowed the rapid follow-up of the afterglow. The observations revealed that
the optical afterglow had a major rebrightening starting at days
and ending at days, which was followed by an initial power-law
decay. Here we show that this early emission feature can be interpreted as the
reverse shock emission superposed by the forward shock emission in an
interstellar medium environment. By fitting the observed data, we further
constrain some parameters of the standard fireball-shock model: the initial
Lorentz factor of the ejecta , the magnetic energy fraction
, and the medium density . These
limits are consistent with those from the other very-early optical afterglows
observed so far. In principle, a wind environment for GRB 050525A is
disfavored.Comment: 11 pages, 1 figure, accepted for publication in Ap
First principles calculation of lithium-phosphorus co-doped diamond
We calculate the density of states (DOS) and the Mulliken population of the
diamond and the co-doped diamonds with different concentrations of lithium (Li)
and phosphorus (P) by the method of the density functional theory, and analyze
the bonding situations of the Li-P co-doped diamond thin films and the impacts
of the Li-P co-doping on the diamond conductivities. The results show that the
Li-P atoms can promote the split of the diamond energy band near the Fermi
level, and improve the electron conductivities of the Li-P co-doped diamond
thin films, or even make the Li-P co-doped diamond from semiconductor to
conductor. The effect of Li-P co-doping concentration on the orbital charge
distributions, bond lengths and bond populations is analyzed. The Li atom may
promote the split of the energy band near the Fermi level as well as may
favorably regulate the diamond lattice distortion and expansion caused by the P
atom.Comment: 14 pages, 11 figure
Supersymmetric Vertex Models with Domain Wall Boundary Conditions
By means of the Drinfeld twists, we derive the determinant representations of
the partition functions for the and supersymmetric vertex
models with domain wall boundary conditions. In the homogenous limit, these
determinants degenerate to simple functions.Comment: 19 pages, 4 figures, to be published in J. Math. Phy
Forward Neutral Pion Production in p + p and d + Au Collisions at √s_(NN) = 200 GeV
Measurements of the production of forward π^0 mesons from p + p and d + Au collisions at √s_(NN) = 200 GeV are reported. The p + p yield generally agrees with next-to-leading order perturbative QCD calculations. The d + Au yield per binary collision is suppressed as η increases, decreasing to ~30% of the p + p yield at =4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward π^0 with charged hadrons at η ≈ 0 show a recoil peak in p + p that is suppressed in d + Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei
- …