16,217 research outputs found
Forecasting multiple functional time series in a group structure: an application to mortality’
When modeling sub-national mortality rates, we should consider three features: (1) how to incorporate any possible correlation among sub-populations to potentially improve forecast accuracy through multi-population joint modeling; (2) how to reconcile sub-national mortality forecasts so that they aggregate adequately across various levels of a group structure; (3) among the forecast reconciliation methods, how to combine their forecasts to achieve improved forecast accuracy. To address these issues, we introduce an extension of grouped univariate functional time series method. We first consider a multivariate functional time series method to jointly forecast multiple related series. We then evaluate the impact and benefit of using forecast combinations among the forecast reconciliation methods. Using the Japanese regional age-specific mortality rates, we investigate one-step-ahead to 15-step-ahead point and interval forecast accuracies of our proposed extension and make recommendations
A planning study for palliative spine treatment using StatRT and megavoltage CT simulation.
Megavoltage CT (MVCT) simulation on the TomoTherapy Hi·Art system is an alternative to conventional CT for treatment planning in the presence of severe metal artifact. StatRT is a new feature that was implemented on the TomoTherapy operator station for performing online MVCT scanning, treatment planning and treatment delivery in one session. The clinical feasibility of using the StatRT technique and MVCT simulation to palliative treatment for a patient with substantial spinal metallic hardware is described. A patient with metastatic non-small-cell lung cancer involving the thoracic spine underwent conventional kilovoltage CT simulation. The metal artifact due to stainless steel spine-stabilizing rods was too severe for treatment planning, despite attempts to correct using density override. The patient was then re-scanned using MVCT on a tomotherapy unit. Plans were generated using both StatRT and conventional tomotherapy planning (Tomo plan) with different settings for comparison. StatRT planning ran a total of five iterations in a short planning window (10-15 min). Two Tomo plans were generated using: (1) five iterations in the "full scatter" mode, and (2) 300 iterations in the "beamlet" mode. It was noted that the DVH of the StatRT plan was almost identical to the Tomo plan optimized by the "full scatter" mode and the same number of iterations. Dose distribution analysis reveals that these three planning methods yielded comparable doses to heart, lungs and targets. This work also demonstrated that undermodulation can result in a high degree of thread effects. The overall time for the treatment process (including 7 minutes for simulation, 15 minutes for contouring, 10 minutes for planning and 5 minutes for delivery) decreases from hours to around 40 minutes using the StatRT procedure. StatRT is a feasible treatment-planning tool for physicians to scan, contour and treat patients within one hour. This can be particularly beneficial in urgent palliative treatments
Dynamical Electron Mass in a Strong Magnetic Field
Motivated by recent interest in understanding properties of strongly
magnetized matter, we study the dynamical electron mass generated through
approximate chiral symmetry breaking in QED in a strong magnetic field. We
reliably calculate the dynamical electron mass by numerically solving the
nonperturbative Schwinger-Dyson equations in a consistent truncation within the
lowest Landau level approximation. It is shown that the generation of dynamical
electron mass in a strong magnetic field is significantly enhanced by the
perturbative electron mass that explicitly breaks chiral symmetry in the
absence of a magnetic field.Comment: 5 pages, 1 figure, published versio
The structure, energy, and electronic states of vacancies in Ge nanocrystals
The atomic structure, energy of formation, and electronic states of vacancies
in H-passivated Ge nanocrystals are studied by density functional theory (DFT)
methods. The competition between quantum self-purification and the free surface
relaxations is investigated. The free surfaces of crystals smaller than 2 nm
distort the Jahn-Teller relaxation and enhance the reconstruction bonds. This
increases the energy splitting of the quantum states and reduces the energy of
formation to as low as 1 eV per defect in the smallest nanocrystals. In
crystals larger than 2 nm the observed symmetry of the Jahn-Teller distortion
matches the symmetry expected for bulk Ge crystals. Near the nanocrystal's
surface the vacancy is found to have an energy of formation no larger than 0.5
to 1.4 eV per defect, but a vacancy more than 0.7 nm inside the surface has an
energy of formation that is the same as in bulk Ge. No evidence of the
self-purification effect is observed; the dominant effect is the free surface
relaxations, which allow for the enhanced reconstruction. From the evidence in
this paper, it is predicted that for moderate sized Ge nanocrystals a vacancy
inside the crystal will behave bulk-like and not interact strongly with the
surface, except when it is within 0.7 nm of the surface.Comment: In Press at Phys. Rev.
- …