322 research outputs found

    Impact of digestive and oropharyngeal decontamination on the intestinal microbiota in ICU patients

    Get PDF
    Selective digestive microbial decontamination (SDD) is hypothesized to benefit patients in intensive care (ICU) by suppressing Gram-negative potential pathogens from the colon without affecting the anaerobic intestinal microbiota. The purpose of this study was to provide more insight to the effects of digestive tract and oropharyngeal decontamination on the intestinal microbiota by means of a prospective clinical trial in which faecal samples were collected from ICU patients for intestinal microbiota analysis. The faecal samples were collected from ICU patients enrolled in a multicentre trial to study the outcome of SDD and selective oral decontamination (SOD) in comparison with standard care (SC). Fluorescent in situ hybridization (FISH) was used to analyze the faecal microbiota. The numbers of bacteria from different bacterial groups were compared between the three regimens. The total counts of bacteria per gram faeces did not differ between regimens. The F. prausnitzii group of bacteria, representing an important group among intestinal microbiota, was significantly reduced in the SDD regimen compared to the SC and SOD. The Enterobacteriaceae were significantly suppressed during SDD compared to both SOD and SC; enterococci increased in SDD compared to both other regimens. The composition of the intestinal microbiota is importantly affected by SDD. The F. prausnitzii group was significantly suppressed during SDD. This group of microbiota is a predominant producer of butyrate, the main energy source for colonocytes. Reduction of this microbiota is an important trade-off while reducing gram-negative bacteria by SDD

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Sedentary Behaviour Intervention as a Personalised Secondary Prevention Strategy (SIT LESS) for patients with coronary artery disease participating in cardiac rehabilitation: rationale and design of the SIT LESS randomised clinical trial.

    Get PDF
    Patients with coronary artery disease (CAD) are more sedentary compared with the general population, but contemporary cardiac rehabilitation (CR) programmes do not specifically target sedentary behaviour (SB). We developed a 12-week, hybrid (centre-based+home-based) Sedentary behaviour IntervenTion as a personaLisEd Secondary prevention Strategy (SIT LESS). The SIT LESS programme is tailored to the needs of patients with CAD, using evidence-based behavioural change methods and an activity tracker connected to an online dashboard to enable self-monitoring and remote coaching. Following the intervention mapping principles, we first identified determinants of SB from literature to adapt theory-based methods and practical applications to target SB and then evaluated the intervention in advisory board meetings with patients and nurse specialists. This resulted in four core components of SIT LESS: (1) patient education, (2) goal setting, (3) motivational interviewing with coping planning, and (4) (tele)monitoring using a pocket-worn activity tracker connected to a smartphone application and providing vibrotactile feedback after prolonged sedentary bouts. We hypothesise that adding SIT LESS to contemporary CR will reduce SB in patients with CAD to a greater extent compared with usual care. Therefore, 212 patients with CAD will be recruited from two Dutch hospitals and randomised to CR (control) or CR+SIT LESS (intervention). Patients will be assessed prior to, immediately after and 3 months after CR. The primary comparison relates to the pre-CR versus post-CR difference in SB (objectively assessed in min/day) between the control and intervention groups. Secondary outcomes include between-group differences in SB characteristics (eg, number of sedentary bouts); change in SB 3 months after CR; changes in light-intensity and moderate-to-vigorous-intensity physical activity; quality of life; and patients' competencies for self-management. Outcomes of the SIT LESS randomised clinical trial will provide novel insight into the effectiveness of a structured, hybrid and personalised behaviour change intervention to attenuate SB in patients with CAD participating in CR. Trial registration number NL9263

    Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: assessment by finite element modeling

    Get PDF
    Effects of extramuscular myofascial force transmission on the acute effects of aponeurotomy were studied using finite element modeling and implications of such effects on surgery were discussed. Aponeurotomized EDL muscle of the rat was modeled in two conditions: (1) fully isolated (2) with intact extramuscular connections. The specific goal was to assess the alterations in muscle length-force characteristics in relation to sarcomere length distributions and to investigate how the mechanical mechanism of the intervention is affected if the muscle is not isolated. Major effects of extramuscular myofascial force transmission were shown on muscle length-force characteristics. In contrast to the identical proximal and distal forces of the aponeurotomized isolated muscle, substantial proximo-distal force differences were shown for aponeurotomized muscle with extramuscular connections (for all muscle lengths F dist > F prox after distal muscle lengthening). Proximal optimal length did not change whereas distal optimal length was lower (by 0.5 mm). The optimal forces of the aponeurotomized muscle with extramuscular connections exerted at both proximal and distal tendons were lower than that of isolated muscle (by 15 and 7%, respectively). The length of the gap separating the two cut ends of the intervened aponeurosis decreases substantially due to extramuscular myofascial force transmission. The amplitude of the difference in gap length was muscle length dependent (maximally 11.6% of the gap length of the extramuscularly connected muscle). Extramuscular myofascial force transmission has substantial effects on distributions of lengths of sarcomeres within the muscle fiber populations distal and proximal to the location of intervention: (a) Within the distal population, the substantial sarcomere shortening at the proximal ends of muscle fibers due to the intervention remained unaffected however, extramuscular myofascial force transmission caused a more pronounced serial distribution towards the distal ends of muscle fibers. (b) In contrast, extramuscular myofascial force transmission limits the serial distribution of sarcomere lengths shown for the aponeurotomized isolated muscle in the proximal population. Fiber stress distributions showed that extramuscular myofascial force transmission causes most sarcomeres within the aponeurotomized muscle to attain lengths favorable for higher force exertion. It is concluded that acute effects of aponeurotomy on muscular mechanics are affected greatly by extramuscular myofascial force transmission. Such effects have important implications for the outcome of surgery performed to improve impeded function since muscle in vivo is not isolated both anatomically and mechanically

    PKCα and PKCδ Regulate ADAM17-Mediated Ectodomain Shedding of Heparin Binding-EGF through Separate Pathways

    Get PDF
    Epidermal growth factor receptor (EGFR) signalling is initiated by the release of EGFR-ligands from membrane-anchored precursors, a process termed ectodomain shedding. This proteolytic event, mainly executed by A Disintegrin And Metalloproteases (ADAMs), is regulated by a number of signal transduction pathways, most notably those involving protein kinase C (PKC). However, the molecular mechanisms of PKC-dependent ectodomain shedding of EGFR-ligands, including the involvement of specific PKC isoforms and possible functional redundancy, are poorly understood. To address this issue, we employed a cell-based system of PMA-induced PKC activation coupled with shedding of heparin binding (HB)-EGF. In agreement with previous studies, we demonstrated that PMA triggers a rapid ADAM17-mediated release of HB-EGF. However, PMA-treatment also results in a protease-independent loss of cell surface HB-EGF. We identified PKCα as the key participant in the activation of ADAM17 and suggest that it acts in parallel with a pathway linking PKCδ and ERK activity. While PKCα specifically regulated PMA-induced shedding, PKCδ and ERK influenced both constitutive and inducible shedding by apparently affecting the level of HB-EGF on the cell surface. Together, these findings indicate the existence of multiple modes of regulation controlling EGFR-ligand availability and subsequent EGFR signal transduction

    Metal-organic framework glasses with permanent accessible porosity.

    Get PDF
    To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability

    Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence

    Get PDF
    Dengue virus is one of the most important arboviral pathogens and the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It is transmitted between humans by the mosquitoes Aedes aegypti and Aedes albopictus, and at least 2.5 billion people are at daily risk of infection. During their lifecycle, mosquitoes are exposed to a variety of microbes, some of which are needed for their successful development into adulthood. However, recent studies have suggested that the adult mosquito's midgut microflora is critical in influencing the transmission of human pathogens. In this study we assessed the reciprocal interactions between the mosquito's midgut microbiota and dengue virus infection that are, to a large extent, mediated by the mosquito's innate immune system. We observed a marked decrease in susceptibility to dengue virus infection when mosquitoes harbored certain field-derived bacterial isolates in their midgut. Transcript abundance analysis of selected antimicrobial peptide genes suggested that the mosquito's microbiota elicits a basal immune activity that appears to act against dengue virus infection. Conversely, the elicitation of the mosquito immune response by dengue virus infection itself influences the microbial load of the mosquito midgut. In sum, we show that the mosquito's microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial responses

    Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption

    Get PDF
    Graphene quantum dots (GQDs) are an allotrope of carbon with a planar surface amenable to functionalization and nanoscale dimensions that confer photoluminescence. Collectively, these properties render GQDs an advantageous platform for nanobiotechnology applications, including optical biosensing and delivery. Towards this end, noncovalent functionalization offers a route to reversibly modify and preserve the pristine GQD substrate, however, a clear paradigm has yet to be realized. Herein, we demonstrate the feasibility of noncovalent polymer adsorption to GQD surfaces, with a specific focus on single-stranded DNA (ssDNA). We study how GQD oxidation level affects the propensity for polymer adsorption by synthesizing and characterizing four types of GQD substrates ranging ~60-fold in oxidation level, then investigating noncovalent polymer association to these substrates. Adsorption of ssDNA quenches intrinsic GQD fluorescence by 31.5% for low-oxidation GQDs and enables aqueous dispersion of otherwise insoluble no-oxidation GQDs. ssDNA-GQD complexation is confirmed by atomic force microscopy, by inducing ssDNA desorption, and with molecular dynamics simulations. ssDNA is determined to adsorb strongly to no-oxidation GQDs, weakly to low-oxidation GQDs, and not at all for heavily oxidized GQDs. Finally, we reveal the generality of the adsorption platform and assess how the GQD system is tunable by modifying polymer sequence and type.https://www.nature.com/articles/s41598-020-63769-
    • …
    corecore