119 research outputs found

    Steady-State Cracks in Viscoelastic Lattice Models

    Full text link
    We study the steady-state motion of mode III cracks propagating on a lattice exhibiting viscoelastic dynamics. The introduction of a Kelvin viscosity η\eta allows for a direct comparison between lattice results and continuum treatments. Utilizing both numerical and analytical (Wiener-Hopf) techniques, we explore this comparison as a function of the driving displacement Δ\Delta and the number of transverse sites NN. At any NN, the continuum theory misses the lattice-trapping phenomenon; this is well-known, but the introduction of η\eta introduces some new twists. More importantly, for large NN even at large Δ\Delta, the standard two-dimensional elastodynamics approach completely misses the η\eta-dependent velocity selection, as this selection disappears completely in the leading order naive continuum limit of the lattice problem.Comment: 27 pages, 8 figure

    Nonlinear lattice model of viscoelastic Mode III fracture

    Full text link
    We study the effect of general nonlinear force laws in viscoelastic lattice models of fracture, focusing on the existence and stability of steady-state Mode III cracks. We show that the hysteretic behavior at small driving is very sensitive to the smoothness of the force law. At large driving, we find a Hopf bifurcation to a straight crack whose velocity is periodic in time. The frequency of the unstable bifurcating mode depends on the smoothness of the potential, but is very close to an exact period-doubling instability. Slightly above the onset of the instability, the system settles into a exactly period-doubled state, presumably connected to the aforementioned bifurcation structure. We explicitly solve for this new state and map out its velocity-driving relation

    Arrested Cracks in Nonlinear Lattice Models of Brittle Fracture

    Full text link
    We generalize lattice models of brittle fracture to arbitrary nonlinear force laws and study the existence of arrested semi-infinite cracks. Unlike what is seen in the discontinuous case studied to date, the range in driving displacement for which these arrested cracks exist is very small. Also, our results indicate that small changes in the vicinity of the crack tip can have an extremely large effect on arrested cracks. Finally, we briefly discuss the possible relevance of our findings to recent experiments.Comment: submitted to PRE, Rapid Communication

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR

    Neural circuits controlling behavior and autonomic functions in medicinal leeches

    Get PDF
    In the study of the neural circuits underlying behavior and autonomic functions, the stereotyped and accessible nervous system of medicinal leeches, Hirudo sp., has been particularly informative. These leeches express well-defined behaviors and autonomic movements which are amenable to investigation at the circuit and neuronal levels. In this review, we discuss some of the best understood of these movements and the circuits which underlie them, focusing on swimming, crawling and heartbeat. We also discuss the rudiments of decision-making: the selection between generally mutually exclusive behaviors at the neuronal level

    An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans

    Get PDF
    Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets

    Monitoring and prevalence rates of metabolic syndrome in military veterans with serious mental illness

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality among patients with serious mental illness (SMI) and the prevalence of metabolic syndrome-a constellation of cardiovascular risk factors-is significantly higher in these patients than in the general population. Metabolic monitoring among patients using second generation antipsychotics (SGAs)-a risk factor for metabolic syndrome-has been shown to be inadequate despite the release of several guidelines. However, patients with SMI have several factors independent of medication use that predispose them to a higher prevalence of metabolic syndrome. Our study therefore examines monitoring and prevalence of metabolic syndrome in patients with SMI, including those not using SGAs. Methods and Findings: We retrospectively identified all patients treated at a Veterans Affairs Medical Center with diagnoses of schizophrenia, schizoaffective disorder or bipolar disorder during 2005-2006 and obtained demographic and clinical data. Incomplete monitoring of metabolic syndrome was defined as being unable to determine the status of at least one of the syndrome components. Of the 1,401 patients included (bipolar disorder: 822; schizophrenia: 222; and schizoaffective disorder: 357), 21.4% were incompletely monitored. Only 54.8% of patients who were not prescribed SGAs and did not have previous diagnoses of hypertension or hypercholesterolemia were monitored for all metabolic syndrome components compared to 92.4% of patients who had all three of these characteristics. Among patients monitored for metabolic syndrome completely, age-adjusted prevalence of the syndrome was 48.4%, with no significant difference between the three psychiatric groups. Conclusions: Only one half of patients with SMI not using SGAs or previously diagnosed with hypertension and hypercholesterolemia were completely monitored for metabolic syndrome components compared to greater than 90% of those with these characteristics. With the high prevalence of metabolic syndrome seen in this population, there appears to be a need to intensify efforts to reduce this monitoring gap

    Aripiprazole Augmentation in the Treatment of Military-Related PTSD with Major Depression: a retrospective chart review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this chart review, we attempted to evaluate the benefits of adding aripiprazole in veterans with military-related PTSD and comorbid depression, who had been minimally or partially responsive to their existing medications.</p> <p>Methods</p> <p>A retrospective chart review of patients who received an open-label, flexible-dose, 12- week course of adjunctive aripiprazole was conducted in 27 military veterans meeting DSM-IV criteria for PTSD and comorbid major depression. Concomitant psychiatric medications continued unchanged, except for other antipsychotics which were discontinued prior to initiating aripiprazole. The primary outcome variable was a change from baseline in the PTSD checklist-military version (PCL-M) and the Beck Depression Inventory (BDI-II).</p> <p>Results</p> <p>PTSD severity (Total PCL scores) decreased from 56.11 at baseline to 46.85 at 12-weeks (p < 0.0001 from Wilcoxon signed rank test) and the depression severity decreased from 30.44 at baseline to 20.67 at 12-weeks (p < 0.0001 from Wilcoxon signed rank test). Thirty seven percent (10/27) were considered responders, as defined by a decrease in total PCL scores of at least 20 percent and 19% (5/27) were considered as responders as defined by a decrease in total BDI score of at least 50%.</p> <p>Conclusions</p> <p>The addition of aripiprazole contributed to a reduction in both PTSD and depression symptomatology in a population that has traditionally demonstrated poor pharmacological response. Further investigations, including double-blind, placebo-controlled studies, are essential to confirm and further demonstrate the benefit of aripiprazole augmentation in the treatment of military related PTSD.</p

    Entorhinal Denervation Induces Homeostatic Synaptic Scaling of Excitatory Postsynapses of Dentate Granule Cells in Mouse Organotypic Slice Cultures

    Get PDF
    Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr2+)-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3–4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro
    corecore