1,998 research outputs found

    Effects of postdeposition annealing on the dielectric properties of antiferroelectric lanthanum-doped lead zirconate stannate titanate thin films derived from pulsed laser deposition

    Get PDF
    Author name used in this publication: K. H. Wong2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Role of oxygen pressure during pulsed laser deposition on the electrical and dielectric properties of antiferroelectric lanthanum-doped lead zirconate stannate titanate thin films

    Get PDF
    Author name used in this publication: K. H. Wong2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes

    Get PDF
    Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β2-adrenergic receptor (β2AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β2AR. We show that the select ligands bind preferentially to different predicted conformers of β2AR, and identify a role of β2AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as "computational probes" to systematically identify protein conformers with likely biological significance. © 2012 Isin et al

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    Structure and mechanism of human DNA polymerase η

    Get PDF
    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites

    Vpr14-88-Apobec3G Fusion Protein Is Efficiently Incorporated into Vif-Positive HIV-1 Particles and Inhibits Viral Infection

    Get PDF
    APOBEC3G (A3G), a deoxycytidine deaminase, is a potent host antiviral factor that can restrict HIV-1 infection. During Vif-negative HIV-1 replication, A3G is incorporated into HIV-1 particles, induces mutations in reverse transcribed viral DNA and inhibits reverse transcription. However, HIV-1 Vif counteracts A3G's activities by inducing its degradation and by blocking its incorporation into HIV-1 particles. Thus, it is interesting to elucidate a mechanism that would allow A3G to escape the effects of Vif in order to rescue its potent antiviral activity and to provide a possible novel therapeutic strategy for treating HIV-1 infection.In this study, we generated an R88-A3G fusion protein by fusing A3G to a virion-targeting polypeptide (R14-88) derived from HIV-1 Vpr protein and compared its antiviral effects relative to those of HA-tagged native A3G (HA-A3G). Our study showed that transient expression of the R88-A3G fusion protein in both Vif(-) and Vif(+) HIV-1 producing cells drastically inhibited viral infection in HeLa-CD4-CCR5-cells, CD4(+) C8166 T cells and human primary PBMCs. Moreover, we established CD4(+) C8166 T cell lines that stably express either R88-A3G or HA-A3G by transduction with VSV-G-pseudotyped lentiviral vector that harbor expression cassettes for R88-A3G or HA-A3G, respectively, and tested their susceptibility to Vif(+) HIV-1 infection. Our results clearly reveal that expression of R88-A3G in transduced CD4(+) C8166 cells significantly blocked Vif(+) HIV-1 infection. In an attempt to understand the mechanism underlying the antiviral activity of R88-A3G, we demonstrated that R88-A3G was efficiently incorporated into viral particles in the presence of Vif. Moreover, PCR analysis revealed that R88-A3G significantly inhibited viral cDNA synthesis during the early stage of Vif(+) virus infection.Our results clearly indicate that R88 delivers A3G into Vif(+) HIV-1 particles and inhibits infectivity and spread of the virions among CD4(+) T cells. This study provides evidence for an effective strategy to modify a host protein with innate anti-HIV-1 activity and rescue its potent anti-HIV potential in the presence of Vif. Further characterization and optimization of this system may lead to the development of an effective therapeutic approach against HIV-1 infection

    Weinberg like sum rules revisited

    Get PDF
    The generalized Weinberg sum rules containing the difference of isovector vector and axial-vector spectral functions saturated by both finite and infinite number of narrow resonances are considered. We summarize the status of these sum rules and analyze their overall agreement with phenomenological Lagrangians, low-energy relations, parity doubling, hadron string models, and experimental data.Comment: 31 pages, noticed misprints are corrected, references are added, and other minor corrections are mad

    Caspase Inhibition with XIAP as an Adjunct to AAV Vector Gene-Replacement Therapy: Improving Efficacy and Prolonging the Treatment Window

    Get PDF
    AAV-mediated gene therapy in the rd10 mouse, with retinal degeneration caused by mutation in the rod cyclic guanosine monophosphate phosphodiesterase β-subunit (PDEβ) gene, produces significant, but transient, rescue of photoreceptor structure and function. This study evaluates the ability of AAV-mediated delivery of X-linked inhibitor of apoptosis (XIAP) to enhance and prolong the efficacy of PDEβ gene-replacement therapy.Rd10 mice were bred and housed in darkness. Two groups of animals were generated: Group 1 received sub-retinal AAV5-XIAP or AAV5-GFP at postnatal age (P) 4 or 21 days; Group 2 received sub-retinal AAV5-XIAP plus AAV5- PDEβ, AAV5-GFP plus AAV5- PDEβ, or AAV- PDEβ alone at age P4 or P21. Animals were maintained for an additional 4 weeks in darkness before being moved to a cyclic-light environment. A subset of animals from Group 1 received a second sub-retinal injection of AAV8-733-PDEβ two weeks after being moved to the light. Histology, immunohistochemistry, Western blots, and electroretinograms were performed at different times after moving to the light.Injection of AAV5-XIAP alone at P4 and 21 resulted in significant slowing of light-induced retinal degeneration, as measured by outer nuclear thickness and cell counts, but did not result in improved outer segment structure and rhodopsin localization. In contrast, co-injection of AAV5-XIAP and AAV5-PDEβ resulted in increased levels of rescue and decreased rates of retinal degeneration compared to treatment with AAV5-PDEβ alone. Mice treated with AAV5-XIAP at P4, but not P21, remained responsive to subsequent rescue by AAV8-733-PDEβ when injected two weeks after moving to a light-cycling environment.Adjunctive treatment with the anti-apoptotic gene XIAP confers additive protective effect to gene-replacement therapy with AAV5-PDEβ in the rd10 mouse. In addition, AAV5-XIAP, when given early, can increase the age at which gene-replacement therapy remains effective, thus effectively prolonging the window of opportunity for therapeutic intervention
    corecore