159 research outputs found

    High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses

    Get PDF
    It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses. Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting. Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33 % more) and high (50 %) object’s breaking force. The time to complete the task was not different between settings during successful manipulation trials. In conclusion: high cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs

    Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne

    Get PDF
    The post-translational modification of proteins with polyubiquitin regulates virtually all aspects of cell biology. Eight distinct chain linkage types in polyubiquitin co-exist and are independently regulated in cells. This ‘ubiquitin code’ determines the fate of the modified protein1. Deubiquitinating enzymes of the Ovarian Tumour (OTU) family regulate cellular signalling by targeting distinct linkage types within polyubiquitin2, and understanding their mechanisms of linkage specificity gives fundamental insights into the ubiquitin system. We here reveal how the deubiquitinase Cezanne/OTUD7B specifically targets Lys11-linked polyubiquitin. Crystal structures of Cezanne alone and in complex with mono- and Lys11-linked diubiquitin, in combination with hydrogen-deuterium exchange mass spectrometry, enable reconstruction of the enzymatic cycle in exquisite detail. An intricate mechanism of ubiquitin-assisted conformational changes activate the enzyme, and while all chain types interact with the enzymatic S1 site, only Lys11-linked chains can bind productively across the active site and stimulate catalytic turnover. Our work highlights the fascinating plasticity of deubiquitinases, and indicates that new conformational states can occur when a true substrate, such as diubiquitin, is bound at the active site

    The role of routine post-natal abdominal ultrasound for newborns in a resource-poor setting: a longitudinal study

    Get PDF
    <p>Abstract</p> <p>Background-</p> <p>Neonatal abdominal ultrasound is usually performed in Nigeria to investigate neonatal symptoms rather than as a follow up to evaluate fetal abnormalities which were detected on prenatal ultrasound. The role of routine obstetric ultrasonography in the monitoring of pregnancy and identification of fetal malformations has partly contributed to lowering of fetal mortality rates. In Nigeria which has a high maternal and fetal mortality rate, many pregnant women do not have ante-natal care and not infrequently, women also deliver their babies at home and only bring the newborns to the clinics for immunization. Even when performed, most routine obstetric scans are not targeted towards the detection of fetal abnormalities.</p> <p>The aim of the present study is to evaluate the benefit of routinely performing abdominal scans on newborns with a view to detecting possible abnormalities which may have been missed ante-natally.</p> <p>Methods-</p> <p>This was a longitudinal study of 202 consecutive, apparently normal newborns. Routine clinical examination and abdominal ultrasound scans were performed on the babies by their mother's bedside, before discharge. Neonates with abnormal initial scans had follow-up scans.</p> <p>Results-</p> <p>There were 108 males and 94 females. There were 12 (5.9%) abnormal scans seen in five male and seven female neonates. Eleven of the twelve abnormalities were in the kidneys, six on the left and five on the right. Three of the four major renal anomalies- absent kidney, ectopic/pelvic kidney and two cases of severe hydronephrosis were however on the left side. There was one suprarenal abnormality on the right suspected to be a possible infected adrenal haemorrage. Nine of the abnormal cases reported for follow- up and of these, two cases had persistent severe abnormalities.</p> <p>Conclusions-</p> <p>This study demonstrated a 5.9% incidence of genito urinary anomalies on routine neonatal abdominal ultrasound in this small population. Routine obstetric USS is very useful but inadequate availability of skilled personnel and cost implications create great challenges in poor resource settings like Nigeria. However, awareness should be created so that parents who can afford such investigations can make informed decisions.</p

    Metal Bioavailability in the Sava River Water

    Get PDF
    Metals present one of the major contamination problems for freshwater systems, such as the Sava River, due to their high toxicity, persistence, and tendency to accumulate in sediment and living organisms. The comprehensive assessment of the metal bioavailability in the Sava River encompassed the analyses of dissolved and DGT-labile metal species of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the river water, as well as the evaluation of the accumulation of five metals (Cd, Cu, Fe, Mn, and Zn) in three organs (liver, gills, and gastrointestinal tissue) of the bioindicator organism, fish species European chub (Squalius cephalus L.).This survey was conducted mainly during the year 2006, in two sampling campaigns, in April/May and September, as periods representative for chub spawning and post-spawning. Additionally, metal concentrations were determined in the intestinal parasites acanthocephalans, which are known for their high affinity for metal accumulation. Metallothionein concentrations were also determined in three chub organs, as a commonly applied biomarker of metal exposure. Based on the metal concentrations in the river water, the Sava River was defined as weakly contaminated and mainly comparable with unpolluted rivers, which enabled the analyses of physiological variability of metal and metallothionein concentrations in the chub organs, as well as the establishment of their constitutive levels

    Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems

    Get PDF
    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration

    Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    Get PDF
    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates
    corecore