107 research outputs found

    The impact of an intervention to introduce malaria rapid diagnostic tests on fever case management in a high transmission setting in Uganda: A mixed-methods cluster-randomized trial (PRIME).

    Get PDF
    Rapid diagnostic tests for malaria (mRDTs) have been scaled-up widely across Africa. The PRIME study evaluated an intervention aiming to improve fever case management using mRDTs at public health centers in Uganda. A cluster-randomized trial was conducted from 2010-13 in Tororo, a high malaria transmission setting. Twenty public health centers were randomized in a 1:1 ratio to intervention or control. The intervention included training in health center management, fever case management with mRDTs, and patient-centered services; plus provision of mRDTs and artemether-lumefantrine (AL) when stocks ran low. Three rounds of Interviews were conducted with caregivers of children under five years of age as they exited health centers (N = 1400); reference mRDTs were done in children with fever (N = 1336). Health worker perspectives on mRDTs were elicited through semi-structured questionnaires (N = 49) and in-depth interviews (N = 10). The primary outcome was inappropriate treatment of malaria, defined as the proportion of febrile children who were not treated according to guidelines based on the reference mRDT. There was no difference in inappropriate treatment of malaria between the intervention and control arms (24.0% versus 29.7%, adjusted risk ratio 0.81 95\% CI: 0.56, 1.17 p = 0.24). Most children (76.0\%) tested positive by reference mRDT, but many were not prescribed AL (22.5\% intervention versus 25.9\% control, p = 0.53). Inappropriate treatment of children testing negative by reference mRDT with AL was also common (31.3\% invention vs 42.4\% control, p = 0.29). Health workers appreciated mRDTs but felt that integrating testing into practice was challenging given constraints on time and infrastructure. The PRIME intervention did not have the desired impact on inappropriate treatment of malaria for children under five. In this high transmission setting, use of mRDTs did not lead to the reductions in antimalarial prescribing seen elsewhere. Broader investment in health systems, including infrastructure and staffing, will be required to improve fever case management

    Impact of intermittent preventive treatment with dihydroartemisinin-piperaquine on malaria in Ugandan schoolchildren: a randomized, placebo-controlled trial.

    Get PDF
    BACKGROUND: Intermittent preventive treatment (IPT) in schoolchildren offers a promising option for malaria control. However, the optimal drug and dosing regimens for IPT remain to be determined. METHODS: We conducted a randomized, double-blind, placebo-controlled trial in 740 schoolchildren aged 6-14 years living in a setting of high malaria transmission in Uganda. Enrolled children were randomized to dihydroartemisinin-piperaquine (DP) given once a month (IPTm), DP given once a school term (4 treatments over 12 months, IPTst), or placebo and followed for 12 months. The primary outcome was the incidence of malaria over 12 months. Secondary outcomes included parasite prevalence and anemia over 12 months. Analyses were conducted on an intention-to-treat basis. RESULTS: In the placebo arm, the incidence of malaria was 0.34 episodes per person-year and the prevalence of parasitemia and anemia was 38% and 20%, respectively. IPTm reduced the incidence of malaria by 96% (95% confidence interval [CI], 88%-99%, P < .0001), the prevalence of asymptomatic parasitemia by 94% (95% CI, 92%-96%, P < .0001), and the prevalence of anemia by 40% (95% CI, 19%-56%, P < .0001). IPTst had no significant effect on the incidence of symptomatic malaria or the prevalence of anemia, but reduced the prevalence of asymptomatic parasitemia by 54% (95% CI, 47%-60%, P < .0001). CONCLUSIONS: Monthly IPT with DP offered remarkable protection against clinical malaria, parasitemia, and anemia in schoolchildren living in a high-malaria-transmission setting. CLINICAL TRIALS REGISTRATION: NCT01231880

    Estimating malaria parasite prevalence from community surveys in Uganda: a comparison of microscopy, rapid diagnostic tests and polymerase chain reaction.

    Get PDF
    BACKGROUND: Household surveys are important tools for monitoring the malaria disease burden and measuring impact of malaria control interventions with parasite prevalence as the primary metric. However, estimates of parasite prevalence are dependent on a number of factors including the method used to detect parasites, age of the population sampled, and level of immunity. To better understand the influence of diagnostics, age, and endemicity on estimates of parasite prevalence and how these change over time, community-based surveys were performed for two consecutive years in three settings and the sensitivities of microscopy and immunochromatographic rapid diagnostic tests (RDTs) were assessed, considering polymerase chain reaction (PCR) as the gold standard. METHODS: Surveys were conducted over the same two-month period in 2012 and 2013 in each of three sub-counties in Uganda: Nagongera in Tororo District (January-February), Walukuba in Jinja District (March-April), and Kihihi in Kanungu District (May-June). In each sub-county, 200 households were randomly enrolled and a household questionnaire capturing information on demographics, use of malaria prevention methods, and proxy indicators of wealth was administered to the head of the household. Finger-prick blood samples were obtained for RDTs, measurement of hemoglobin, thick and thin blood smears, and to store samples on filter paper. RESULTS: A total of 1200 households were surveyed and 4433 participants were included in the analysis. Compared to PCR, the sensitivity of microscopy was low (65.3% in Nagongera, 49.6% in Walukuba and 40.9% in Kihihi) and decreased with increasing age. The specificity of microscopy was over 98% at all sites and did not vary with age or year. Relative differences in parasite prevalence across different age groups, study sites, and years were similar for microscopy and PCR. The sensitivity of RDTs was similar across the three sites (range 77.2-82.8%), was consistently higher than microscopy (p < 0.001 for all pairwise comparisons), and decreased with increasing age. The specificity of RDTs was lower than microscopy (76.3% in Nagongera, 86.3% in Walukuba, and 83.5% in Kihihi) and varied significantly by year and age. Relative differences in parasite prevalence across age groups and study years differed for RDTs compared to microscopy and PCR. CONCLUSION: Malaria prevalence estimates varied with diagnostic test, age, and transmission intensity. It is important to consider the effects of these parameters when designing and interpreting community-based surveys

    Intermittent preventive treatment with dihydroartemisinin-piperaquine in Ugandan schoolchildren selects for Plasmodium falciparum transporter polymorphisms that modify drug sensitivity.

    Get PDF
    Dihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its impact on Plasmodium falciparum drug sensitivity is uncertain. In a trial of intermittent preventive treatment in schoolchildren in Tororo, Uganda, in 2011 to 2012, monthly DP for 1 year decreased the incidence of malaria by 96% compared to placebo; DP once per school term offered protection primarily during the first month after therapy. To assess the impact of DP on selection of drug resistance, we compared the prevalence of key polymorphisms in isolates that emerged at different intervals after treatment with DP. Blood obtained monthly and at each episode of fever was assessed for P. falciparum parasitemia by microscopy. Samples from 160 symptomatic and 650 asymptomatic episodes of parasitemia were assessed at 4 loci (N86Y, Y184F, and D1246Y in pfmdr1 and K76T in pfcrt) that modulate sensitivity to aminoquinoline antimalarials, utilizing a ligase detection reaction-fluorescent microsphere assay. For pfmdr1 N86Y and pfcrt K76T, but not the other studied polymorphisms, the prevalences of mutant genotypes were significantly greater in children who had received DP within the past 30 days than in those not treated within 60 days (86Y, 18.0% versus 8.3% [P = 0.03]; 76T, 96.0% versus 86.1% [P = 0.05]), suggesting selective pressure of DP. Full sequencing of pfcrt in a subset of samples did not identify additional polymorphisms selected by DP. In summary, parasites that emerged soon after treatment with DP were more likely than parasites not under drug pressure to harbor pfmdr1 and pfcrt polymorphisms associated with decreased sensitivity to aminoquinoline antimalarials. (This study has been registered at ClinicalTrials.gov under no. NCT01231880.)

    Changing antimalarial drug resistance patterns identified by surveillance at three sites in Uganda.

    Get PDF
    : We assessed Plasmodium falciparum drug resistance markers in parasites collected in 2012, 2013, and 2015 at 3 sites in Uganda. The prevalence and frequency of parasites with mutations in putative transporters previously associated with resistance to aminoquinolines, but increased sensitivity to lumefantrine (pfcrt 76T; pfmdr1 86Y and 1246Y), decreased markedly at all sites. Antifolate resistance mutations were common, with apparent emergence of mutations (pfdhfr 164L; pfdhps 581G) associated with high-level resistance. K13 mutations linked to artemisinin resistance were uncommon and did not increase over time. Changing malaria treatment practices have been accompanied by profound changes in markers of resistance.<br/

    Behind the scenes of the PRIME intervention: designing a complex intervention to improve malaria care at public health centres in Uganda.

    Get PDF
    In Uganda, health system challenges limit access to good quality healthcare and contribute to slow progress on malaria control. We developed a complex intervention (PRIME), which was designed to improve quality of care for malaria at public health centres. Responding to calls for increased transparency, we describe the PRIME intervention's design process, rationale, and final content and reflect on the choices and challenges encountered during the design of this complex intervention. To develop the intervention, we followed a multistep approach, including the following: 1) formative research to identify intervention target areas and objectives; 2) prioritization of intervention components; 3) review of relevant evidence; 4) development of intervention components; 5) piloting and refinement of workshop modules; and 6) consolidation of the PRIME intervention theories of change to articulate why and how the intervention was hypothesized to produce desired outcomes. We aimed to develop an intervention that was evidence-based, grounded in theory, and appropriate for the study context; could be evaluated within a randomized controlled trial; and had the potential to be scaled up sustainably. The process of developing the PRIME intervention package was lengthy and dynamic. The final intervention package consisted of four components: 1) training in fever case management and use of rapid diagnostic tests for malaria (mRDTs); 2) workshops in health centre management; 3) workshops in patient-centred services; and 4) provision of mRDTs and antimalarials when stocks ran low. The slow and iterative process of intervention design contrasted with the continually shifting study context. We highlight the considerations and choices made at each design stage, discussing elements we included and why, as well as those that were ultimately excluded. Reflection on and reporting of 'behind the scenes' accounts of intervention design may improve the design, assessment, and generalizability of complex interventions and their evaluations

    Pharmacovigilance of antimalarial treatment in Africa: is it possible?

    Get PDF
    Pharmacovigilance, defined as "the science and activities relating to the detection, assessment, understanding and prevention of adverse effects or any other possible drug related problem", is increasingly being recognized in Africa. Many African countries have simultaneously adopted artemisinin derivative based combination therapy (ACT) as first-line treatment for uncomplicated malaria, offering an opportunity to assess the safety of these drugs when used widely. While ACTs appear to be safe and well-tolerated, there is little experience with these medicines in Africa, outside clinical trials. Pharmacovigilance for ACTs and other combination treatments in Africa is essential. Malaria transmission intensity is high and antimalarial medicines are used frequently. Presumptive treatment of fever with antimalarials is common, often in the absence of a confirmed diagnosis, using drugs obtained without a prescription. Informal use of antimalarial drugs may increase the risk of incorrect dosing, inappropriate treatment, and drug interactions, which may impact negatively on drug safety. Furthermore, the administration of antimalarial treatments in patients with a concomitant illness, including HIV/AIDs, tuberculosis and malnutrition, is a concern. African countries are being encouraged to establish pharmacovigilance systems as ACTs are rolled out. However, pharmacovigilance is difficult, even in countries with a well-developed health care system. The rationale for pharmacovigilance of antimalarial drugs is discussed here, outlining the practical challenges and proposing approaches that could be adopted in Africa

    Efficacy, Safety, and Tolerability of Three Regimens for Prevention of Malaria: A Randomized, Placebo-Controlled Trial in Ugandan Schoolchildren

    Get PDF
    BACKGROUND: Intermittent preventive treatment (IPT) is a promising malaria control strategy; however, the optimal regimen remains unclear. We conducted a randomized, single-blinded, placebo-controlled trial to evaluate the efficacy, safety, and tolerability of a single course of sulfadoxine-pyrimethamine (SP), amodiaquine + SP (AQ+SP) or dihydroartemisinin-piperaquine (DP) among schoolchildren to inform IPT. METHODS: Asymptomatic girls aged 8 to 12 years and boys aged 8 to 14 years enrolled in two primary schools in Tororo, Uganda were randomized to receive one of the study regimens or placebo, regardless of presence of parasitemia at enrollment, and followed for 42 days. The primary outcome was risk of parasitemia at 42 days. Survival analysis was used to assess differences between regimens. RESULTS: Of 780 enrolled participants, 769 (98.6%) completed follow-up and were assigned a treatment outcome. The risk of parasitemia at 42 days varied significantly between DP (11.7% [95% confidence interval (CI): 7.9, 17.1]), AQ+SP (44.3% [37.6, 51.5]), and SP (79.7% [95% CI: 73.6, 85.2], p<0.001). The risk of parasitemia in SP-treated children was no different than in those receiving placebo (84.6% [95% CI: 79.1, 89.3], p = 0.22). No serious adverse events occurred, but AQ+SP was associated with increased risk of vomiting compared to placebo (13.0% [95% CI: 9.1, 18.5] vs. 4.7% [95% CI: 2.5, 8.8], respectively, p = 0.003). CONCLUSIONS: DP was the most efficacious and well-tolerated regimen tested, although AQ+SP appears to be a suitable alternative for IPT in schoolchildren. Use of SP for IPT may not be appropriate in areas with high-level SP resistance in Africa. TRIAL REGISTRATION: ClinicalTrials.gov NCT00852371

    Efficacy and tolerability of four antimalarial combinations in the treatment of uncomplicated Plasmodium falciparum malaria in Senegal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In view of the high level of chloroquine resistance in many countries, WHO has recommended the use of combination therapy with artemisinin derivatives in the treatment of uncomplicated malaria due to <it>Plasmodium falciparum</it>. Four antimalarial drug combinations, artesunate plus amodiaquine (Arsucam<sup>®</sup>), artesunate plus mefloquine (Artequin<sup>®</sup>), artemether plus lumefantrine (Coartem<sup>®</sup>; four doses and six doses), and amodiaquine plus sulphadoxine-pyrimethamine, were studied in five health districts in Senegal.</p> <p>Methods</p> <p>This is a descriptive, analytical, open, randomized study to evaluate the efficacy and tolerability of these four antimalarial combinations in the treatment of uncomplicated falciparum malaria using the 2002 WHO protocol.</p> <p>Results</p> <p>All drug combinations demonstrated good efficacy. On day 28, all combinations resulted in an excellent clinical and parasitological response rate of 100% after correction for PCR results, except for the four-dose artemether-lumefantrine regimen (96.4%). Follow-up of approximately 10% of each treatment group on day 42 demonstrated an efficacy of 100%.</p> <p>The combinations were well tolerated clinically and biologically. No unexpected side-effect was observed and all side-effects disappeared at the end of treatment. No serious side-effect requiring premature termination of treatment was observed.</p> <p>Conclusion</p> <p>The four combinations are effective and well-tolerated.</p

    Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children.

    Get PDF
    BACKGROUND: Use of different methods for assessing the efficacy of artemisinin-based combination antimalarial treatments (ACTs) will result in different estimates being reported, with implications for changes in treatment policy. METHODS: Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a) reinfections excluded from the analysis (standard WHO per-protocol analysis) or (1b) reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a) WHO (2001) definitions of failure, or (2b) failure defined using parasitological criteria only. RESULTS: Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702), artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706) and artemether-lumefantrine (AL, N = 518).Using method (1a), the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference) and the others were: (i) method 1b = 1.3% [0 to 24.8], (ii) method 2a = 1.1% [0 to 21.5], and (iii) method 2b = 0% [-38 to 19.3].The standard per-protocol method (1a) tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a). It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size was lost when failures were classified on the first day of parasite recurrence and survival analytical methods were used. CONCLUSION: The primary purpose of an in vivo study should be to provide a precise estimate of the risk of antimalarial treatment failure due to drug resistance. Use of survival analysis is the most appropriate way to estimate failure rates with parasitological recurrence classified as treatment failure on the day it occurs
    • …
    corecore